The ${\rm R}_2$ measure for totally positive algebraic integers
Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 45-53.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\alpha $ be a totally positive algebraic integer of degree $d$, i.e., all of its conjugates $\alpha _1= \alpha , \ldots ,\alpha _d$ are positive real numbers. We study the set ${\cal R}_2$ of the quantities $(\prod _{i=1}^d (1 + \alpha _i^2)^{1/2})^{1/d}$. We first show that $\sqrt 2$ is the smallest point of ${\cal R}_2$. Then, we prove that there exists a number $l$ such that ${\cal R}_2$ is dense in $(l, \infty )$. Finally, using the method of auxiliary functions, we find the six smallest points of ${\cal R}_2$ in $(\sqrt 2, l)$. The polynomials involved in the auxiliary function are found by a recursive algorithm.
DOI : 10.4064/cm6221-1-2016
Keywords: alpha totally positive algebraic integer degree its conjugates alpha alpha ldots alpha positive real numbers study set cal quantities prod alpha first sqrt smallest point cal prove there exists number cal dense infty finally using method auxiliary functions six smallest points cal sqrt polynomials involved auxiliary function found recursive algorithm

V. Flammang 1

1 UMR CNRS 7502, IECL Université de Lorraine, site de Metz Département de Mathématiques UFR MIM Ile du Saulcy, CS 50128 57045 Metz Cedex 01, France
@article{10_4064_cm6221_1_2016,
     author = {V. Flammang},
     title = {The ${\rm R}_2$ measure for totally positive algebraic integers},
     journal = {Colloquium Mathematicum},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6221-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6221-1-2016/}
}
TY  - JOUR
AU  - V. Flammang
TI  - The ${\rm R}_2$ measure for totally positive algebraic integers
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 45
EP  - 53
VL  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6221-1-2016/
DO  - 10.4064/cm6221-1-2016
LA  - en
ID  - 10_4064_cm6221_1_2016
ER  - 
%0 Journal Article
%A V. Flammang
%T The ${\rm R}_2$ measure for totally positive algebraic integers
%J Colloquium Mathematicum
%D 2016
%P 45-53
%V 144
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6221-1-2016/
%R 10.4064/cm6221-1-2016
%G en
%F 10_4064_cm6221_1_2016
V. Flammang. The ${\rm R}_2$ measure for totally positive algebraic integers. Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 45-53. doi : 10.4064/cm6221-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6221-1-2016/

Cité par Sources :