Steinhaus' lattice point problem for polyhedra
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 123-128
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that for every $d$-dimensional polyhedron $\varPi $ in ${\mathbb {R}}^d, \,d\ge 2$, with volume $n+\alpha ,\,|\alpha | \lt 1$, there is a congruent copy of $\varPi $ that contains exactly $n$ lattice points.
Keywords:
proved every d dimensional polyhedron varpi mathbb volume alpha alpha there congruent copy varpi contains exactly lattice points
Affiliations des auteurs :
Hiroshi Maehara 1
@article{10_4064_cm6213_5_2016,
author = {Hiroshi Maehara},
title = {Steinhaus' lattice point problem for polyhedra},
journal = {Colloquium Mathematicum},
pages = {123--128},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2017},
doi = {10.4064/cm6213-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6213-5-2016/}
}
Hiroshi Maehara. Steinhaus' lattice point problem for polyhedra. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 123-128. doi: 10.4064/cm6213-5-2016
Cité par Sources :