Steinhaus' lattice point problem for polyhedra
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 123-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that for every $d$-dimensional polyhedron $\varPi $ in ${\mathbb {R}}^d, \,d\ge 2$, with volume $n+\alpha ,\,|\alpha | \lt 1$, there is a congruent copy of $\varPi $ that contains exactly $n$ lattice points.
DOI : 10.4064/cm6213-5-2016
Keywords: proved every d dimensional polyhedron varpi mathbb volume alpha alpha there congruent copy varpi contains exactly lattice points

Hiroshi Maehara 1

1 Ryukyu University Nishihara, Okinawa 903-0213, Japan
@article{10_4064_cm6213_5_2016,
     author = {Hiroshi Maehara},
     title = {Steinhaus' lattice point problem for polyhedra},
     journal = {Colloquium Mathematicum},
     pages = {123--128},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6213-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6213-5-2016/}
}
TY  - JOUR
AU  - Hiroshi Maehara
TI  - Steinhaus' lattice point problem for polyhedra
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 123
EP  - 128
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6213-5-2016/
DO  - 10.4064/cm6213-5-2016
LA  - en
ID  - 10_4064_cm6213_5_2016
ER  - 
%0 Journal Article
%A Hiroshi Maehara
%T Steinhaus' lattice point problem for polyhedra
%J Colloquium Mathematicum
%D 2017
%P 123-128
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6213-5-2016/
%R 10.4064/cm6213-5-2016
%G en
%F 10_4064_cm6213_5_2016
Hiroshi Maehara. Steinhaus' lattice point problem for polyhedra. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 123-128. doi : 10.4064/cm6213-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6213-5-2016/

Cité par Sources :