Some isomorphic properties in $K(X,Y)$ and in projective tensor products
Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 239-252
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the (DPrcp) property and the Gelfand–Phillips properties in spaces of compact operators. Moreover we give some sufficient conditions implying that the projective tensor product of two Banach spaces is sequentially right (SR) or has the L-limited property. We introduce the dual (SR$^*$) property and we give a characterization of it, also showing that it is intermediate between the (V$^*)$ and the (RDP$^*)$ properties. Finally, we study the Bourgain–Diestel property (BD) and the (RDP$^*)$ property in the space $K_{w^*\hbox {-}w}(X^*,Y).$
Keywords:
study dprcp property gelfand phillips properties spaces compact operators moreover sufficient conditions implying projective tensor product banach spaces sequentially right has l limited property introduce dual * property characterization showing intermediate between * rdp * properties finally study bourgain diestel property rdp * property space * hbox *
Affiliations des auteurs :
Raffaella Cilia 1 ; Giovanni Emmanuele 1
@article{10_4064_cm6184_12_2015,
author = {Raffaella Cilia and Giovanni Emmanuele},
title = {Some isomorphic properties in $K(X,Y)$ and in projective tensor products},
journal = {Colloquium Mathematicum},
pages = {239--252},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {2017},
doi = {10.4064/cm6184-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/}
}
TY - JOUR AU - Raffaella Cilia AU - Giovanni Emmanuele TI - Some isomorphic properties in $K(X,Y)$ and in projective tensor products JO - Colloquium Mathematicum PY - 2017 SP - 239 EP - 252 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/ DO - 10.4064/cm6184-12-2015 LA - en ID - 10_4064_cm6184_12_2015 ER -
%0 Journal Article %A Raffaella Cilia %A Giovanni Emmanuele %T Some isomorphic properties in $K(X,Y)$ and in projective tensor products %J Colloquium Mathematicum %D 2017 %P 239-252 %V 146 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/ %R 10.4064/cm6184-12-2015 %G en %F 10_4064_cm6184_12_2015
Raffaella Cilia; Giovanni Emmanuele. Some isomorphic properties in $K(X,Y)$ and in projective tensor products. Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 239-252. doi: 10.4064/cm6184-12-2015
Cité par Sources :