Some isomorphic properties in $K(X,Y)$ and in projective tensor products
Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 239-252.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the (DPrcp) property and the Gelfand–Phillips properties in spaces of compact operators. Moreover we give some sufficient conditions implying that the projective tensor product of two Banach spaces is sequentially right (SR) or has the L-limited property. We introduce the dual (SR$^*$) property and we give a characterization of it, also showing that it is intermediate between the (V$^*)$ and the (RDP$^*)$ properties. Finally, we study the Bourgain–Diestel property (BD) and the (RDP$^*)$ property in the space $K_{w^*\hbox {-}w}(X^*,Y).$
DOI : 10.4064/cm6184-12-2015
Keywords: study dprcp property gelfand phillips properties spaces compact operators moreover sufficient conditions implying projective tensor product banach spaces sequentially right has l limited property introduce dual * property characterization showing intermediate between * rdp * properties finally study bourgain diestel property rdp * property space * hbox *

Raffaella Cilia 1 ; Giovanni Emmanuele 1

1 Dipartimento di Matematica ed Informatica Università di Catania Viale Andrea Doria 6 95125 Catania, Italy
@article{10_4064_cm6184_12_2015,
     author = {Raffaella Cilia and Giovanni Emmanuele},
     title = {Some isomorphic properties in $K(X,Y)$ and in projective tensor products},
     journal = {Colloquium Mathematicum},
     pages = {239--252},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6184-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/}
}
TY  - JOUR
AU  - Raffaella Cilia
AU  - Giovanni Emmanuele
TI  - Some isomorphic properties in $K(X,Y)$ and in projective tensor products
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 239
EP  - 252
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/
DO  - 10.4064/cm6184-12-2015
LA  - en
ID  - 10_4064_cm6184_12_2015
ER  - 
%0 Journal Article
%A Raffaella Cilia
%A Giovanni Emmanuele
%T Some isomorphic properties in $K(X,Y)$ and in projective tensor products
%J Colloquium Mathematicum
%D 2017
%P 239-252
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/
%R 10.4064/cm6184-12-2015
%G en
%F 10_4064_cm6184_12_2015
Raffaella Cilia; Giovanni Emmanuele. Some isomorphic properties in $K(X,Y)$ and in projective tensor products. Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 239-252. doi : 10.4064/cm6184-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6184-12-2015/

Cité par Sources :