Explicit averages of non-negative multiplicative functions: going beyond the main term
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 275-313
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We produce an explicit formula for averages of the type $\sum _{d\le D}(g\star \mathbf1 )(d)/d$, where $\star $ is the Dirichlet convolution and $g$ a function that vanishes at infinity (more precise conditions are needed, a typical example of an acceptable function is $g(m)=\mu (m)/m$). This formula enables one to exploit the changes of sign of $g(m)$. We use this formula for the classical family of sieve-related functions $G_q(D)=\sum _{{d\le D, (d,q)=1}}{\mu ^2(d)/\varphi (d)}$ for an integer parameter $q$, improving noticeably on earlier results. The remainder of the paper deals with the special case $q=1$ to show how to practically exploit the changes of sign of the Möbius function. It is proven in particular that $|G_1(D)-\log D-c_0|\le 4/\sqrt {D}$ and $|G_1(D)-\log D-c_0|\le 18.4/(\sqrt {D}\log D)$ when $D \gt 1$, for a suitable constant $c_0$.
Keywords:
produce explicit formula averages type sum star mathbf where star dirichlet convolution function vanishes infinity precise conditions needed typical example acceptable function formula enables exploit changes sign formula classical family sieve related functions sum varphi integer parameter improving noticeably earlier results remainder paper deals special practically exploit changes sign bius function proven particular log d c sqrt log d c sqrt log suitable constant nbsp
Affiliations des auteurs :
O. Ramaré 1 ; P. Akhilesh 2
@article{10_4064_cm6080_4_2016,
author = {O. Ramar\'e and P. Akhilesh},
title = {Explicit averages of non-negative multiplicative functions: going beyond the main term},
journal = {Colloquium Mathematicum},
pages = {275--313},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2017},
doi = {10.4064/cm6080-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/}
}
TY - JOUR AU - O. Ramaré AU - P. Akhilesh TI - Explicit averages of non-negative multiplicative functions: going beyond the main term JO - Colloquium Mathematicum PY - 2017 SP - 275 EP - 313 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/ DO - 10.4064/cm6080-4-2016 LA - en ID - 10_4064_cm6080_4_2016 ER -
%0 Journal Article %A O. Ramaré %A P. Akhilesh %T Explicit averages of non-negative multiplicative functions: going beyond the main term %J Colloquium Mathematicum %D 2017 %P 275-313 %V 147 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/ %R 10.4064/cm6080-4-2016 %G en %F 10_4064_cm6080_4_2016
O. Ramaré; P. Akhilesh. Explicit averages of non-negative multiplicative functions: going beyond the main term. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 275-313. doi: 10.4064/cm6080-4-2016
Cité par Sources :