Explicit averages of non-negative multiplicative functions: going beyond the main term
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 275-313.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We produce an explicit formula for averages of the type $\sum _{d\le D}(g\star \mathbf1 )(d)/d$, where $\star $ is the Dirichlet convolution and $g$ a function that vanishes at infinity (more precise conditions are needed, a typical example of an acceptable function is $g(m)=\mu (m)/m$). This formula enables one to exploit the changes of sign of $g(m)$. We use this formula for the classical family of sieve-related functions $G_q(D)=\sum _{{d\le D, (d,q)=1}}{\mu ^2(d)/\varphi (d)}$ for an integer parameter $q$, improving noticeably on earlier results. The remainder of the paper deals with the special case $q=1$ to show how to practically exploit the changes of sign of the Möbius function. It is proven in particular that $|G_1(D)-\log D-c_0|\le 4/\sqrt {D}$ and $|G_1(D)-\log D-c_0|\le 18.4/(\sqrt {D}\log D)$ when $D \gt 1$, for a suitable constant $c_0$.
DOI : 10.4064/cm6080-4-2016
Keywords: produce explicit formula averages type sum star mathbf where star dirichlet convolution function vanishes infinity precise conditions needed typical example acceptable function formula enables exploit changes sign formula classical family sieve related functions sum varphi integer parameter improving noticeably earlier results remainder paper deals special practically exploit changes sign bius function proven particular log d c sqrt log d c sqrt log suitable constant nbsp

O. Ramaré 1 ; P. Akhilesh 2

1 CNRS / Institut de Mathématiques de Marseille Aix Marseille Université, U.M.R. 7373 Site Sud, Campus de Luminy, Case 907 13288 Marseille Cedex 9, France
2 Harish-Chandra Research Institute Chhatnag Road Jhusi, Allahabad 211 019, India
@article{10_4064_cm6080_4_2016,
     author = {O. Ramar\'e and P. Akhilesh},
     title = {Explicit averages of non-negative multiplicative functions: going beyond the main term},
     journal = {Colloquium Mathematicum},
     pages = {275--313},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6080-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/}
}
TY  - JOUR
AU  - O. Ramaré
AU  - P. Akhilesh
TI  - Explicit averages of non-negative multiplicative functions: going beyond the main term
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 275
EP  - 313
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/
DO  - 10.4064/cm6080-4-2016
LA  - en
ID  - 10_4064_cm6080_4_2016
ER  - 
%0 Journal Article
%A O. Ramaré
%A P. Akhilesh
%T Explicit averages of non-negative multiplicative functions: going beyond the main term
%J Colloquium Mathematicum
%D 2017
%P 275-313
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/
%R 10.4064/cm6080-4-2016
%G en
%F 10_4064_cm6080_4_2016
O. Ramaré; P. Akhilesh. Explicit averages of non-negative multiplicative functions: going beyond the main term. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 275-313. doi : 10.4064/cm6080-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6080-4-2016/

Cité par Sources :