Some new infinite families of congruences modulo 3 for overpartitions into odd parts
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 255-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ \bar{p}_o(n)$ denote the number of overpartitions of $n$ in which only odd parts are used. Some congruences modulo 3 and powers of 2 for the function $ \bar{p}_o(n)$ have been derived by Hirschhorn and Sellers, and Lovejoy and Osburn. In this paper, employing 2-dissections of certain quotients of theta functions due to Ramanujan, we prove some new infinite families of Ramanujan-type congruences for $ \bar{p}_o(n)$ modulo 3. For example, we prove that for $n, \alpha\geq 0 $, $$ \bar{p}_o(4^\alpha(24n+17)) \equiv \bar{p}_o(4^\alpha(24n+23)) \equiv 0 \ ({\rm mod}\ 3). $$
DOI : 10.4064/cm142-2-6
Keywords: bar denote number overpartitions which only odd parts congruences modulo powers function bar have derived hirschhorn sellers lovejoy osburn paper employing dissections certain quotients theta functions due ramanujan prove infinite families ramanujan type congruences bar modulo example prove alpha geq bar alpha equiv bar alpha equiv mod

Ernest X. W. Xia 1

1 Department of Mathematics Jiangsu University Zhenjiang, Jiangsu 212013, P.R. China
@article{10_4064_cm142_2_6,
     author = {Ernest X. W. Xia},
     title = {Some new infinite families of congruences modulo 3 for overpartitions into odd parts},
     journal = {Colloquium Mathematicum},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2016},
     doi = {10.4064/cm142-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-6/}
}
TY  - JOUR
AU  - Ernest X. W. Xia
TI  - Some new infinite families of congruences modulo 3 for overpartitions into odd parts
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 255
EP  - 266
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-6/
DO  - 10.4064/cm142-2-6
LA  - en
ID  - 10_4064_cm142_2_6
ER  - 
%0 Journal Article
%A Ernest X. W. Xia
%T Some new infinite families of congruences modulo 3 for overpartitions into odd parts
%J Colloquium Mathematicum
%D 2016
%P 255-266
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-6/
%R 10.4064/cm142-2-6
%G en
%F 10_4064_cm142_2_6
Ernest X. W. Xia. Some new infinite families of congruences modulo 3 for overpartitions into odd parts. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 255-266. doi : 10.4064/cm142-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-6/

Cité par Sources :