Maximal function and Carleson measures in the theory of Békollé–Bonami weights
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 211-226
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\omega$ be a Békollé–Bonami weight. We give a complete characterization of the positive measures $\mu$ such that
$$
\int_{\mathcal H}|M_\omega f(z)|^q\,d\mu(z)\le C\biggl(\int_{\mathcal H}|f(z)|^p\omega(z)\,dV(z)\bigg)^{q/p}
$$
and
$$
\mu(\{z\in \mathcal H: Mf(z)>\lambda\})\le \frac{C}{\lambda^q}\biggl(\int_{\mathcal H}|f(z)|^p\omega(z)\,dV(z)\bigg)^{q/p},
$$
where $M_\omega$ is the weighted Hardy–Littlewood maximal function on the upper half-plane $\mathcal H$ and $1\le p,q\infty$.
Keywords:
omega koll bonami weight complete characterization positive measures int mathcal omega biggl int mathcal omega bigg mathcal lambda frac lambda biggl int mathcal omega bigg where omega weighted hardy littlewood maximal function upper half plane nbsp mathcal infty
Affiliations des auteurs :
Carnot D. Kenfack 1 ; Benoît F. Sehba 2
@article{10_4064_cm142_2_4,
author = {Carnot D. Kenfack and Beno{\^\i}t F. Sehba},
title = {Maximal function and {Carleson} measures in the theory of {B\'ekoll\'e{\textendash}Bonami} weights},
journal = {Colloquium Mathematicum},
pages = {211--226},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2016},
doi = {10.4064/cm142-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/}
}
TY - JOUR AU - Carnot D. Kenfack AU - Benoît F. Sehba TI - Maximal function and Carleson measures in the theory of Békollé–Bonami weights JO - Colloquium Mathematicum PY - 2016 SP - 211 EP - 226 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/ DO - 10.4064/cm142-2-4 LA - en ID - 10_4064_cm142_2_4 ER -
%0 Journal Article %A Carnot D. Kenfack %A Benoît F. Sehba %T Maximal function and Carleson measures in the theory of Békollé–Bonami weights %J Colloquium Mathematicum %D 2016 %P 211-226 %V 142 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/ %R 10.4064/cm142-2-4 %G en %F 10_4064_cm142_2_4
Carnot D. Kenfack; Benoît F. Sehba. Maximal function and Carleson measures in the theory of Békollé–Bonami weights. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 211-226. doi: 10.4064/cm142-2-4
Cité par Sources :