Maximal function and Carleson measures in the theory of Békollé–Bonami weights
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 211-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\omega$ be a Békollé–Bonami weight. We give a complete characterization of the positive measures $\mu$ such that $$ \int_{\mathcal H}|M_\omega f(z)|^q\,d\mu(z)\le C\biggl(\int_{\mathcal H}|f(z)|^p\omega(z)\,dV(z)\bigg)^{q/p} $$ and $$ \mu(\{z\in \mathcal H: Mf(z)>\lambda\})\le \frac{C}{\lambda^q}\biggl(\int_{\mathcal H}|f(z)|^p\omega(z)\,dV(z)\bigg)^{q/p}, $$ where $M_\omega$ is the weighted Hardy–Littlewood maximal function on the upper half-plane $\mathcal H$ and $1\le p,q\infty$.
DOI : 10.4064/cm142-2-4
Keywords: omega koll bonami weight complete characterization positive measures int mathcal omega biggl int mathcal omega bigg mathcal lambda frac lambda biggl int mathcal omega bigg where omega weighted hardy littlewood maximal function upper half plane nbsp mathcal infty

Carnot D. Kenfack 1 ; Benoît F. Sehba 2

1 Département de Mathématiques Faculté des Sciences Université de Yaoundé I B.P. 812 Yaoundé, Cameroun
2 Department of Mathematics University of Ghana Legon, P.O. Box LG 62 Legon, Accra, Ghana
@article{10_4064_cm142_2_4,
     author = {Carnot D. Kenfack and Beno{\^\i}t F. Sehba},
     title = {Maximal function and {Carleson} measures in the theory of {B\'ekoll\'e{\textendash}Bonami} weights},
     journal = {Colloquium Mathematicum},
     pages = {211--226},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2016},
     doi = {10.4064/cm142-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/}
}
TY  - JOUR
AU  - Carnot D. Kenfack
AU  - Benoît F. Sehba
TI  - Maximal function and Carleson measures in the theory of Békollé–Bonami weights
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 211
EP  - 226
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/
DO  - 10.4064/cm142-2-4
LA  - en
ID  - 10_4064_cm142_2_4
ER  - 
%0 Journal Article
%A Carnot D. Kenfack
%A Benoît F. Sehba
%T Maximal function and Carleson measures in the theory of Békollé–Bonami weights
%J Colloquium Mathematicum
%D 2016
%P 211-226
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/
%R 10.4064/cm142-2-4
%G en
%F 10_4064_cm142_2_4
Carnot D. Kenfack; Benoît F. Sehba. Maximal function and Carleson measures in the theory of Békollé–Bonami weights. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 211-226. doi : 10.4064/cm142-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-4/

Cité par Sources :