Upper estimates on self-perimeters of unit circles for gauges
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 179-210.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M^2$ denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure $B$ which, as a unit circle of $M^2$, is not necessarily centered at the origin. Hence the self-perimeter of $B$ has two values depending on the orientation of measuring it. We prove that this self-perimeter of $B$ is bounded from above by the four-fold self-diameter of $B$. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.
DOI : 10.4064/cm142-2-3
Keywords: denote minkowski plane affine plane whose metric nbsp gauge induced compact convex figure which unit circle necessarily centered origin hence self perimeter has values depending orientation measuring prove self perimeter bounded above four fold self diameter addition derive related non trivial result minkowski planes whose unit circles quadrangles

Horst Martini 1 ; Anatoliy Shcherba 2

1 Faculty of Mathematics Technical University of Chemnitz 09107 Chemnitz, Germany
2 Department of Industrial Computer Technologies Cherkasy State Technological University Shevchenko Blvd., 460 Cherkasy, 18006, Ukraine
@article{10_4064_cm142_2_3,
     author = {Horst Martini and Anatoliy Shcherba},
     title = {Upper estimates on self-perimeters
 of unit circles for gauges},
     journal = {Colloquium Mathematicum},
     pages = {179--210},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2016},
     doi = {10.4064/cm142-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-3/}
}
TY  - JOUR
AU  - Horst Martini
AU  - Anatoliy Shcherba
TI  - Upper estimates on self-perimeters
 of unit circles for gauges
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 179
EP  - 210
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-3/
DO  - 10.4064/cm142-2-3
LA  - en
ID  - 10_4064_cm142_2_3
ER  - 
%0 Journal Article
%A Horst Martini
%A Anatoliy Shcherba
%T Upper estimates on self-perimeters
 of unit circles for gauges
%J Colloquium Mathematicum
%D 2016
%P 179-210
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-3/
%R 10.4064/cm142-2-3
%G en
%F 10_4064_cm142_2_3
Horst Martini; Anatoliy Shcherba. Upper estimates on self-perimeters
 of unit circles for gauges. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 179-210. doi : 10.4064/cm142-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-3/

Cité par Sources :