Upper estimates on self-perimeters
of unit circles for gauges
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 179-210
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $M^2$ denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure $B$ which, as a unit circle of $M^2$, is not necessarily centered at the origin. Hence the self-perimeter of $B$ has two values depending on the orientation of measuring it. We prove that this self-perimeter of $B$ is bounded from above by the four-fold self-diameter of $B$. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.
Keywords:
denote minkowski plane affine plane whose metric nbsp gauge induced compact convex figure which unit circle necessarily centered origin hence self perimeter has values depending orientation measuring prove self perimeter bounded above four fold self diameter addition derive related non trivial result minkowski planes whose unit circles quadrangles
Affiliations des auteurs :
Horst Martini 1 ; Anatoliy Shcherba 2
@article{10_4064_cm142_2_3,
author = {Horst Martini and Anatoliy Shcherba},
title = {Upper estimates on self-perimeters
of unit circles for gauges},
journal = {Colloquium Mathematicum},
pages = {179--210},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2016},
doi = {10.4064/cm142-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-3/}
}
TY - JOUR AU - Horst Martini AU - Anatoliy Shcherba TI - Upper estimates on self-perimeters of unit circles for gauges JO - Colloquium Mathematicum PY - 2016 SP - 179 EP - 210 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-3/ DO - 10.4064/cm142-2-3 LA - en ID - 10_4064_cm142_2_3 ER -
Horst Martini; Anatoliy Shcherba. Upper estimates on self-perimeters of unit circles for gauges. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 179-210. doi: 10.4064/cm142-2-3
Cité par Sources :