On the relation between maximal rigid objects and $\tau $-tilting modules
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 169-178.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This note compares $\tau $-tilting modules and maximal rigid objects in the context of 2-Calabi–Yau triangulated categories. Let ${\mathcal C}$ be a 2-Calabi–Yau triangulated category with suspension functor $S$. Let $R$ be a maximal rigid object in ${\mathcal C}$ and let $\varGamma $ be the endomorphism algebra of $R$. Let $F$ be the functor $\operatorname {Hom}\nolimits _{{\mathcal C}}(R, -): {\mathcal C}\to \operatorname {mod}\nolimits \varGamma $. We prove that any $\tau $-tilting module over $\varGamma $ lifts uniquely to a maximal rigid object in ${\mathcal C}$ via $F$, and in turn, that projection from ${\mathcal C}$ to $\operatorname {mod}\nolimits \varGamma $ sends the maximal rigid objects which have no direct summands from $\operatorname {add}\nolimits SR$ to $\tau $-tilting $\varGamma $-modules, and in general, that the $\varGamma $-modules corresponding to the maximal rigid objects are the support $\tau $-tilting modules.
DOI : 10.4064/cm142-2-2
Keywords: note compares tau tilting modules maximal rigid objects context calabi yau triangulated categories mathcal calabi yau triangulated category suspension functor maximal rigid object mathcal vargamma endomorphism algebra functor operatorname hom nolimits mathcal mathcal operatorname mod nolimits vargamma prove tau tilting module vargamma lifts uniquely maximal rigid object mathcal via nbsp turn projection mathcal operatorname mod nolimits vargamma sends maximal rigid objects which have direct summands operatorname nolimits tau tilting vargamma modules general vargamma modules corresponding maximal rigid objects support tau tilting modules

Pin Liu 1 ; Yunli Xie 1

1 Department of Mathematics Southwest Jiaotong University 611756 Chengdu, P.R. China
@article{10_4064_cm142_2_2,
     author = {Pin Liu and Yunli Xie},
     title = {On the relation between maximal rigid objects and $\tau $-tilting modules},
     journal = {Colloquium Mathematicum},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2016},
     doi = {10.4064/cm142-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-2/}
}
TY  - JOUR
AU  - Pin Liu
AU  - Yunli Xie
TI  - On the relation between maximal rigid objects and $\tau $-tilting modules
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 169
EP  - 178
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-2/
DO  - 10.4064/cm142-2-2
LA  - en
ID  - 10_4064_cm142_2_2
ER  - 
%0 Journal Article
%A Pin Liu
%A Yunli Xie
%T On the relation between maximal rigid objects and $\tau $-tilting modules
%J Colloquium Mathematicum
%D 2016
%P 169-178
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-2/
%R 10.4064/cm142-2-2
%G en
%F 10_4064_cm142_2_2
Pin Liu; Yunli Xie. On the relation between maximal rigid objects and $\tau $-tilting modules. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 169-178. doi : 10.4064/cm142-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-2/

Cité par Sources :