On the UMD constant of the space $\ell _1^N$
Colloquium Mathematicum, Tome 142 (2016) no. 1, pp. 135-147
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $N\geq 2$ be a given integer. Suppose that $df=(df_n)_{n\geq 0}$
is a martingale difference sequence with values in $\ell_1^N$ and let
$(\varepsilon_n)_{n\geq 0}$ be a deterministic sequence of signs. The paper
contains the proof of the estimate
$$
\mathbb{P}\Bigl(\sup_{n\geq 0}\, \Bigl\|\sum_{k=0}^n \varepsilon_k df_k\Bigr\|_{\ell_1^N}\geq 1\Bigr)
\leq \frac{\ln N+\ln(3\ln N)}{1-(2\ln N)^{-1}}\sup_{n\geq 0}\mathbb E
\Bigl\|\sum_{k=0}^n df_k\Bigr\|_{\ell_1^N}.
$$
It is shown that this result is asymptotically sharp in the sense that
the least constant $C_N$ in the above estimate satisfies $\lim_{N\to
\infty}C_N/\!\ln N=1$. The novelty in the proof is the explicit
verification of the $\zeta$-convexity of the space $\ell_1^N$.
Keywords:
geq given integer suppose geq martingale difference sequence values ell varepsilon geq deterministic sequence signs paper contains proof estimate mathbb bigl sup geq bigl sum varepsilon bigr ell geq bigr leq frac sup geq mathbb bigl sum bigr ell shown result asymptotically sharp sense least constant above estimate satisfies lim infty novelty proof explicit verification zeta convexity space ell
Affiliations des auteurs :
Adam Osękowski 1
@article{10_4064_cm142_1_7,
author = {Adam Os\k{e}kowski},
title = {On the {UMD} constant of the space $\ell _1^N$},
journal = {Colloquium Mathematicum},
pages = {135--147},
publisher = {mathdoc},
volume = {142},
number = {1},
year = {2016},
doi = {10.4064/cm142-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-1-7/}
}
Adam Osękowski. On the UMD constant of the space $\ell _1^N$. Colloquium Mathematicum, Tome 142 (2016) no. 1, pp. 135-147. doi: 10.4064/cm142-1-7
Cité par Sources :