Upper bounds for certain trigonometric sums involving cosine powers
Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 249-260.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish upper bounds for certain trigonometric sums involving cosine powers. Part of these results extend previous ones valid for the sum \[ \sum^{k-1}_{m=1}\frac{|\!\sin(\pi rm/k)|}{\sin(\pi m/k)}. \] We apply our results to estimate character sums in an explicit and elementary way.
DOI : 10.4064/cm141-2-9
Keywords: establish upper bounds certain trigonometric sums involving cosine powers part these results extend previous valid sum sum k frac sin sin apply results estimate character sums explicit elementary

Anastasios D. Simalarides 1

1 196 Kifissias Street Kifissia 14562, Attica, Greece
@article{10_4064_cm141_2_9,
     author = {Anastasios D. Simalarides},
     title = {Upper bounds for certain trigonometric sums involving cosine powers},
     journal = {Colloquium Mathematicum},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2015},
     doi = {10.4064/cm141-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-9/}
}
TY  - JOUR
AU  - Anastasios D. Simalarides
TI  - Upper bounds for certain trigonometric sums involving cosine powers
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 249
EP  - 260
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-9/
DO  - 10.4064/cm141-2-9
LA  - en
ID  - 10_4064_cm141_2_9
ER  - 
%0 Journal Article
%A Anastasios D. Simalarides
%T Upper bounds for certain trigonometric sums involving cosine powers
%J Colloquium Mathematicum
%D 2015
%P 249-260
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-9/
%R 10.4064/cm141-2-9
%G en
%F 10_4064_cm141_2_9
Anastasios D. Simalarides. Upper bounds for certain trigonometric sums involving cosine powers. Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 249-260. doi : 10.4064/cm141-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-9/

Cité par Sources :