On the diophantine equation $x^2+x+1=yz$
Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 243-248.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

All solutions of the equation $x^2+x+1=yz$ in non-negative integers $x,y,z$ are given in terms of an arithmetic continued fraction.
DOI : 10.4064/cm141-2-8
Mots-clés : solutions equation non negative integers given terms arithmetic continued fraction

A. Schinzel 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
@article{10_4064_cm141_2_8,
     author = {A. Schinzel},
     title = {On the diophantine equation $x^2+x+1=yz$},
     journal = {Colloquium Mathematicum},
     pages = {243--248},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2015},
     doi = {10.4064/cm141-2-8},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-8/}
}
TY  - JOUR
AU  - A. Schinzel
TI  - On the diophantine equation $x^2+x+1=yz$
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 243
EP  - 248
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-8/
DO  - 10.4064/cm141-2-8
LA  - fr
ID  - 10_4064_cm141_2_8
ER  - 
%0 Journal Article
%A A. Schinzel
%T On the diophantine equation $x^2+x+1=yz$
%J Colloquium Mathematicum
%D 2015
%P 243-248
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-8/
%R 10.4064/cm141-2-8
%G fr
%F 10_4064_cm141_2_8
A. Schinzel. On the diophantine equation $x^2+x+1=yz$. Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 243-248. doi : 10.4064/cm141-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-8/

Cité par Sources :