On the diophantine equation $x^2+x+1=yz$
Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 243-248
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
All solutions of the equation $x^2+x+1=yz$ in non-negative integers $x,y,z$ are given in terms of an arithmetic continued fraction.
Mots-clés :
solutions equation non negative integers given terms arithmetic continued fraction
Affiliations des auteurs :
A. Schinzel  1
@article{10_4064_cm141_2_8,
author = {A. Schinzel},
title = {On the diophantine equation $x^2+x+1=yz$},
journal = {Colloquium Mathematicum},
pages = {243--248},
year = {2015},
volume = {141},
number = {2},
doi = {10.4064/cm141-2-8},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-8/}
}
A. Schinzel. On the diophantine equation $x^2+x+1=yz$. Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 243-248. doi: 10.4064/cm141-2-8
Cité par Sources :