Singularity categories of skewed-gentle algebras
Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 183-198
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be an algebraically closed field. Let $(Q,Sp,I)$ be a skewed-gentle triple,
and let $(Q^{sg},I^{sg})$ and $(Q^g,I^{g})$ be the corresponding skewed-gentle pair and
the associated gentle pair, respectively. We prove that the skewed-gentle algebra $KQ^{sg}/\langle I^{sg}\rangle$ is singularity equivalent to
$KQ/\langle I\rangle$. Moreover, we use $(Q,Sp,I)$ to describe the singularity category of $KQ^g/\langle I^g\rangle$. As a corollary, we find that $\operatorname{gldim} KQ^{sg}/\langle I^{sg}\rangle\infty$ if and only if
$\operatorname{gldim} KQ/\langle I\rangle\infty$ if and only if $\operatorname{gldim} KQ^{g}/\langle I^{g}\rangle\infty$.
Keywords:
algebraically closed field skewed gentle triple corresponding skewed gentle pair associated gentle pair respectively prove skewed gentle algebra langle rangle singularity equivalent langle rangle moreover describe singularity category langle rangle corollary operatorname gldim langle rangle infty only operatorname gldim langle rangle infty only operatorname gldim langle rangle infty
Affiliations des auteurs :
Xinhong Chen 1 ; Ming Lu 2
@article{10_4064_cm141_2_4,
author = {Xinhong Chen and Ming Lu},
title = {Singularity categories of skewed-gentle algebras},
journal = {Colloquium Mathematicum},
pages = {183--198},
year = {2015},
volume = {141},
number = {2},
doi = {10.4064/cm141-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-4/}
}
Xinhong Chen; Ming Lu. Singularity categories of skewed-gentle algebras. Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 183-198. doi: 10.4064/cm141-2-4
Cité par Sources :