Lie derivations of dual extensions of algebras
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 65-82
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a field and $\varGamma $ a finite quiver without oriented cycles. Let $\varLambda :=K(\varGamma , \rho )$ be the quotient algebra of the path algebra $K\varGamma $ by the ideal generated by $\rho $, and let $\mathscr {D}(\varLambda )$ be the dual extension of $\varLambda $. We prove that each Lie derivation of $\mathscr {D}(\varLambda )$ is of the standard form.
Keywords:
field vargamma finite quiver without oriented cycles varlambda vargamma rho quotient algebra path algebra vargamma ideal generated rho mathscr varlambda dual extension nbsp varlambda prove each lie derivation mathscr varlambda standard form
Affiliations des auteurs :
Yanbo Li 1 ; Feng Wei 2
@article{10_4064_cm141_1_7,
author = {Yanbo Li and Feng Wei},
title = {Lie derivations of dual extensions of algebras},
journal = {Colloquium Mathematicum},
pages = {65--82},
publisher = {mathdoc},
volume = {141},
number = {1},
year = {2015},
doi = {10.4064/cm141-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-7/}
}
Yanbo Li; Feng Wei. Lie derivations of dual extensions of algebras. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 65-82. doi: 10.4064/cm141-1-7
Cité par Sources :