A quasi-dichotomy for $C(\alpha , X)$ spaces, $\alpha \omega _{1}$
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 51-59
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following quasi-dichotomy involving the Banach spaces
$C(\alpha, X)$ of all $X$-valued continuous functions defined on the
interval $[0, \alpha]$ of ordinals
and endowed with the supremum norm.Suppose that $X$ and $Y$ are arbitrary Banach spaces of finite
cotype. Then at least one of the following statements is true.(1) There exists a finite ordinal $n$ such that either $C(n, X)$ contains a copy of $Y$, or $C( n, Y)$ contains a copy of $X$.(2) For any infinite countable ordinals $\alpha$, $\beta$, $\xi$, $\eta$, the following
are equivalent:
(a) $C(\alpha, X) \oplus C(\xi, Y)$ is isomorphic to $C(\beta, X) \oplus C(\eta, Y)$.
(b) $C(\alpha)$ is isomorphic to $C(\beta)$, and $C(\xi)$ is isomorphic to $C(\eta).$This result is optimal in the sense that it cannot be extended to uncountable ordinals.
Keywords:
prove following quasi dichotomy involving banach spaces alpha x valued continuous functions defined interval alpha ordinals endowed supremum norm suppose arbitrary banach spaces finite cotype least following statements there exists finite ordinal either contains copy nbsp contains copy nbsp infinite countable ordinals alpha beta eta following equivalent alpha oplus isomorphic beta oplus eta alpha isomorphic beta isomorphic eta result optimal sense cannot extended uncountable ordinals
Affiliations des auteurs :
Elói Medina Galego 1 ; Maurício Zahn 2
@article{10_4064_cm141_1_5,
author = {El\'oi Medina Galego and Maur{\'\i}cio Zahn},
title = {A quasi-dichotomy for $C(\alpha , X)$ spaces, $\alpha < \omega _{1}$},
journal = {Colloquium Mathematicum},
pages = {51--59},
publisher = {mathdoc},
volume = {141},
number = {1},
year = {2015},
doi = {10.4064/cm141-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-5/}
}
TY - JOUR
AU - Elói Medina Galego
AU - Maurício Zahn
TI - A quasi-dichotomy for $C(\alpha , X)$ spaces, $\alpha < \omega _{1}$
JO - Colloquium Mathematicum
PY - 2015
SP - 51
EP - 59
VL - 141
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-5/
DO - 10.4064/cm141-1-5
LA - en
ID - 10_4064_cm141_1_5
ER -
%0 Journal Article
%A Elói Medina Galego
%A Maurício Zahn
%T A quasi-dichotomy for $C(\alpha , X)$ spaces, $\alpha < \omega _{1}$
%J Colloquium Mathematicum
%D 2015
%P 51-59
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-5/
%R 10.4064/cm141-1-5
%G en
%F 10_4064_cm141_1_5
Elói Medina Galego; Maurício Zahn. A quasi-dichotomy for $C(\alpha , X)$ spaces, $\alpha < \omega _{1}$. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 51-59. doi: 10.4064/cm141-1-5
Cité par Sources :