The quasi Isbell topology on function spaces
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 13-24
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper, on the family ${\mathcal O}(Y)$ of all open subsets of a space $Y$ we define the so called quasi Scott topology, denoted by $\tau _{\rm qSc}$. This topology defines in a standard way, on the set $C(Y,Z)$ of all continuous maps of the space $Y$ to a space $Z$, a topology $t_{\rm qIs}$ called the quasi Isbell topology. The latter topology is always larger than or equal to the Isbell topology, and smaller than or equal to the strong Isbell topology. Results and problems concerning the topology $t_{\rm qIs}$ are given.
Keywords:
paper family mathcal subsets space define called quasi scott topology denoted tau qsc topology defines standard set continuous maps space space nbsp topology qis called quasi isbell topology latter topology always larger equal isbell topology smaller equal strong isbell topology results problems concerning topology qis given
Affiliations des auteurs :
D. N. Georgiou 1 ; A. C. Megaritis 2
@article{10_4064_cm141_1_2,
author = {D. N. Georgiou and A. C. Megaritis},
title = {The quasi {Isbell} topology on function spaces},
journal = {Colloquium Mathematicum},
pages = {13--24},
publisher = {mathdoc},
volume = {141},
number = {1},
year = {2015},
doi = {10.4064/cm141-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-2/}
}
TY - JOUR AU - D. N. Georgiou AU - A. C. Megaritis TI - The quasi Isbell topology on function spaces JO - Colloquium Mathematicum PY - 2015 SP - 13 EP - 24 VL - 141 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-2/ DO - 10.4064/cm141-1-2 LA - en ID - 10_4064_cm141_1_2 ER -
D. N. Georgiou; A. C. Megaritis. The quasi Isbell topology on function spaces. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 13-24. doi: 10.4064/cm141-1-2
Cité par Sources :