Non-separating subcontinua of planar continua
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 143-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum $X$ contains a proper, non-degenerate subcontinuum which does not separate $X$.
DOI : 10.4064/cm141-1-12
Keywords: revisit old question knaster demonstrating each non degenerate plane hereditarily unicoherent continuum contains proper non degenerate subcontinuum which does separate

D. Daniel 1 ; C. Islas 2 ; R. Leonel 3 ; E. D. Tymchatyn 4

1 Department of Mathematics Lamar University Beaumont, TX 77710, U.S.A.
2 Department of Mathematics University of Saskatchewan Saskatoon, Saskatchewan, Canada S7N 0W0 and Universidad Autónoma de la Ciudad de México México, Mexico
3 Department of Mathematics University of Saskatchewan Saskatoon, Saskatchewan, Canada S7N 0W0 and Universidad Autónoma del Estado de Hidalgo Pachuca, Mexico
4 Department of Mathematics University of Saskatchewan Saskatoon, Saskatchewan, Canada S7N 0W0
@article{10_4064_cm141_1_12,
     author = {D. Daniel and C. Islas and R. Leonel and E. D. Tymchatyn},
     title = {Non-separating subcontinua of planar continua},
     journal = {Colloquium Mathematicum},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2015},
     doi = {10.4064/cm141-1-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/}
}
TY  - JOUR
AU  - D. Daniel
AU  - C. Islas
AU  - R. Leonel
AU  - E. D. Tymchatyn
TI  - Non-separating subcontinua of planar continua
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 143
EP  - 148
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/
DO  - 10.4064/cm141-1-12
LA  - en
ID  - 10_4064_cm141_1_12
ER  - 
%0 Journal Article
%A D. Daniel
%A C. Islas
%A R. Leonel
%A E. D. Tymchatyn
%T Non-separating subcontinua of planar continua
%J Colloquium Mathematicum
%D 2015
%P 143-148
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/
%R 10.4064/cm141-1-12
%G en
%F 10_4064_cm141_1_12
D. Daniel; C. Islas; R. Leonel; E. D. Tymchatyn. Non-separating subcontinua of planar continua. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 143-148. doi : 10.4064/cm141-1-12. http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/

Cité par Sources :