Non-separating subcontinua of planar continua
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 143-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum $X$ contains a proper, non-degenerate subcontinuum which does not separate $X$.
Keywords:
revisit old question knaster demonstrating each non degenerate plane hereditarily unicoherent continuum contains proper non degenerate subcontinuum which does separate
Affiliations des auteurs :
D. Daniel 1 ; C. Islas 2 ; R. Leonel 3 ; E. D. Tymchatyn 4
@article{10_4064_cm141_1_12,
author = {D. Daniel and C. Islas and R. Leonel and E. D. Tymchatyn},
title = {Non-separating subcontinua of planar continua},
journal = {Colloquium Mathematicum},
pages = {143--148},
publisher = {mathdoc},
volume = {141},
number = {1},
year = {2015},
doi = {10.4064/cm141-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/}
}
TY - JOUR AU - D. Daniel AU - C. Islas AU - R. Leonel AU - E. D. Tymchatyn TI - Non-separating subcontinua of planar continua JO - Colloquium Mathematicum PY - 2015 SP - 143 EP - 148 VL - 141 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/ DO - 10.4064/cm141-1-12 LA - en ID - 10_4064_cm141_1_12 ER -
%0 Journal Article %A D. Daniel %A C. Islas %A R. Leonel %A E. D. Tymchatyn %T Non-separating subcontinua of planar continua %J Colloquium Mathematicum %D 2015 %P 143-148 %V 141 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-12/ %R 10.4064/cm141-1-12 %G en %F 10_4064_cm141_1_12
D. Daniel; C. Islas; R. Leonel; E. D. Tymchatyn. Non-separating subcontinua of planar continua. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 143-148. doi: 10.4064/cm141-1-12
Cité par Sources :