Large free subgroups of automorphism groups of ultrahomogeneous spaces
Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 279-295.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the following notion of largeness for subgroups of $S_\infty$. A group $G$ is large if it contains a free subgroup on $\mathfrak c$ generators. We give a necessary condition for a countable structure $A$ to have a large group $\mathop{\rm Aut}(A)$ of automorphisms. It turns out that any countable free subgroup of $S_\infty$ can be extended to a large free subgroup of $S_\infty$, and, under Martin's Axiom, any free subgroup of $S_\infty$ of cardinality less than $\mathfrak c$ can also be extended to a large free subgroup of $S_\infty$. Finally, if $G_n$ are countable groups, then either $\prod_{n\in\mathbb N} G_n$ is large, or it does not contain any free subgroup on uncountably many generators.
DOI : 10.4064/cm140-2-7
Keywords: consider following notion largeness subgroups infty group large contains subgroup mathfrak generators necessary condition countable structure have large group mathop aut automorphisms turns out countable subgroup infty extended large subgroup infty under martins axiom subgroup infty cardinality mathfrak extended large subgroup infty finally countable groups either prod mathbb large does contain subgroup uncountably many generators

Szymon Głąb 1 ; Filip Strobin 1

1 Institute of Mathematics Lodz University of Technology Wólczańska 215 93-005 Łódź, Poland
@article{10_4064_cm140_2_7,
     author = {Szymon G{\l}\k{a}b and Filip Strobin},
     title = {Large free subgroups of automorphism groups of ultrahomogeneous spaces},
     journal = {Colloquium Mathematicum},
     pages = {279--295},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2015},
     doi = {10.4064/cm140-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-7/}
}
TY  - JOUR
AU  - Szymon Głąb
AU  - Filip Strobin
TI  - Large free subgroups of automorphism groups of ultrahomogeneous spaces
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 279
EP  - 295
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-7/
DO  - 10.4064/cm140-2-7
LA  - en
ID  - 10_4064_cm140_2_7
ER  - 
%0 Journal Article
%A Szymon Głąb
%A Filip Strobin
%T Large free subgroups of automorphism groups of ultrahomogeneous spaces
%J Colloquium Mathematicum
%D 2015
%P 279-295
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-7/
%R 10.4064/cm140-2-7
%G en
%F 10_4064_cm140_2_7
Szymon Głąb; Filip Strobin. Large free subgroups of automorphism groups of ultrahomogeneous spaces. Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 279-295. doi : 10.4064/cm140-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-7/

Cité par Sources :