Matrix factorizations for domestic triangle singularities
Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 239-278.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Working over an algebraically closed field $k$ of any characteristic, we determine the matrix factorizations for the—suitably graded—triangle singularities $f=x^a+y^b+z^c$ of domestic type, that is, we assume that $(a,b,c)$ are integers at least two satisfying $1/a+1/b+1/c>1$. Using work by Kussin–Lenzing–Meltzer, this is achieved by determining projective covers in the Frobenius category of vector bundles on the weighted projective line of weight type $(a,b,c)$. Equivalently, in a representation-theoretic context, we can work in the mesh category of $\mathbb {Z}\tilde\varDelta $ over $k$, where $\tilde\varDelta $ is the extended Dynkin diagram corresponding to the Dynkin diagram $\varDelta =[a,b,c]$. Our work is related to, but in methods and results different from, the determination of matrix factorizations for the $\mathbb {Z}$-graded simple singularities by Kajiura–Saito–Takahashi. In particular, we obtain symmetric matrix factorizations whose entries are scalar multiples of monomials, with scalars taken from $\{0,\pm 1\}$.
DOI : 10.4064/cm140-2-6
Keywords: working algebraically closed field characteristic determine matrix factorizations suitably graded triangle singularities y domestic type assume integers least satisfying using work kussin lenzing meltzer achieved determining projective covers frobenius category vector bundles weighted projective line weight type equivalently representation theoretic context work mesh category mathbb tilde vardelta where tilde vardelta extended dynkin diagram corresponding dynkin diagram vardelta work related methods results different determination matrix factorizations mathbb graded simple singularities kajiura saito takahashi particular obtain symmetric matrix factorizations whose entries scalar multiples monomials scalars taken

Dawid Edmund Kędzierski 1 ; Helmut Lenzing 2 ; Hagen Meltzer 3

1 Instytut Matematyki Uniwersytet Szczeciński 70-451 Szczecin, Poland
2 Institut für Mathematik Universität Paderborn 33095 Paderborn, Germany
3 Instytut Matematyki Uniwersytet Szczeciński 70451 Szczecin, Poland
@article{10_4064_cm140_2_6,
     author = {Dawid Edmund K\k{e}dzierski and Helmut Lenzing and Hagen Meltzer},
     title = {Matrix factorizations for
 domestic triangle singularities},
     journal = {Colloquium Mathematicum},
     pages = {239--278},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2015},
     doi = {10.4064/cm140-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-6/}
}
TY  - JOUR
AU  - Dawid Edmund Kędzierski
AU  - Helmut Lenzing
AU  - Hagen Meltzer
TI  - Matrix factorizations for
 domestic triangle singularities
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 239
EP  - 278
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-6/
DO  - 10.4064/cm140-2-6
LA  - en
ID  - 10_4064_cm140_2_6
ER  - 
%0 Journal Article
%A Dawid Edmund Kędzierski
%A Helmut Lenzing
%A Hagen Meltzer
%T Matrix factorizations for
 domestic triangle singularities
%J Colloquium Mathematicum
%D 2015
%P 239-278
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-6/
%R 10.4064/cm140-2-6
%G en
%F 10_4064_cm140_2_6
Dawid Edmund Kędzierski; Helmut Lenzing; Hagen Meltzer. Matrix factorizations for
 domestic triangle singularities. Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 239-278. doi : 10.4064/cm140-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-6/

Cité par Sources :