On $v$-positive type transformations
in infinite measure
Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 149-170
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For each vector $v$ we define the notion of a $v$-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be $(1,2)$-positive type.
We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.
Keywords:
each vector define notion v positive type infinite measure preserving transformations refinement positive type introduced hajian kakutani prove positive type transformation positive type study notion context markov shifts multiple recurrence several examples
Affiliations des auteurs :
Tudor Pădurariu 1 ; Cesar E. Silva 2 ; Evangelie Zachos 3
@article{10_4064_cm140_2_1,
author = {Tudor P\u{a}durariu and Cesar E. Silva and Evangelie Zachos},
title = {On $v$-positive type transformations
in infinite measure},
journal = {Colloquium Mathematicum},
pages = {149--170},
publisher = {mathdoc},
volume = {140},
number = {2},
year = {2015},
doi = {10.4064/cm140-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/}
}
TY - JOUR AU - Tudor Pădurariu AU - Cesar E. Silva AU - Evangelie Zachos TI - On $v$-positive type transformations in infinite measure JO - Colloquium Mathematicum PY - 2015 SP - 149 EP - 170 VL - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/ DO - 10.4064/cm140-2-1 LA - en ID - 10_4064_cm140_2_1 ER -
%0 Journal Article %A Tudor Pădurariu %A Cesar E. Silva %A Evangelie Zachos %T On $v$-positive type transformations in infinite measure %J Colloquium Mathematicum %D 2015 %P 149-170 %V 140 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/ %R 10.4064/cm140-2-1 %G en %F 10_4064_cm140_2_1
Tudor Pădurariu; Cesar E. Silva; Evangelie Zachos. On $v$-positive type transformations in infinite measure. Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 149-170. doi: 10.4064/cm140-2-1
Cité par Sources :