On $v$-positive type transformations in infinite measure
Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 149-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For each vector $v$ we define the notion of a $v$-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be $(1,2)$-positive type. We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.
DOI : 10.4064/cm140-2-1
Keywords: each vector define notion v positive type infinite measure preserving transformations refinement positive type introduced hajian kakutani prove positive type transformation positive type study notion context markov shifts multiple recurrence several examples

Tudor Pădurariu 1 ; Cesar E. Silva 2 ; Evangelie Zachos 3

1 University of California Los Angeles, CA 90095-1555, U.S.A.
2 Department of Mathematics Williams College Williamstown, MA 01267, U.S.A.
3 Princeton University Princeton, NJ 08544, U.S.A.
@article{10_4064_cm140_2_1,
     author = {Tudor P\u{a}durariu and Cesar E. Silva and Evangelie Zachos},
     title = {On $v$-positive type transformations
 in infinite measure},
     journal = {Colloquium Mathematicum},
     pages = {149--170},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2015},
     doi = {10.4064/cm140-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/}
}
TY  - JOUR
AU  - Tudor Pădurariu
AU  - Cesar E. Silva
AU  - Evangelie Zachos
TI  - On $v$-positive type transformations
 in infinite measure
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 149
EP  - 170
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/
DO  - 10.4064/cm140-2-1
LA  - en
ID  - 10_4064_cm140_2_1
ER  - 
%0 Journal Article
%A Tudor Pădurariu
%A Cesar E. Silva
%A Evangelie Zachos
%T On $v$-positive type transformations
 in infinite measure
%J Colloquium Mathematicum
%D 2015
%P 149-170
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/
%R 10.4064/cm140-2-1
%G en
%F 10_4064_cm140_2_1
Tudor Pădurariu; Cesar E. Silva; Evangelie Zachos. On $v$-positive type transformations
 in infinite measure. Colloquium Mathematicum, Tome 140 (2015) no. 2, pp. 149-170. doi : 10.4064/cm140-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm140-2-1/

Cité par Sources :