New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs
Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 91-105
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\overline{ pp}(n)$ denote the number of overpartition pairs of
$n$. Bringmann and Lovejoy (2008) proved that for $n\geq 0$,
$\, \overline{ pp} (3n+2) \equiv 0\pmod 3$. They also proved that there are
infinitely many Ramanujan-type congruences modulo every power of
odd primes for $\overline{ pp}(n)$. Recently,
Chen and Lin (2012) established some Ramanujan-type
identities and explicit congruences for $\overline{pp}(n)$.
Furthermore, they also constructed infinite families of congruences
for $\overline{ pp}(n)$ modulo 3 and 5, and two congruence relations modulo 9.
In this paper, we prove several new infinite families of
congruences modulo 9 for $\overline{ pp}(n)$. For example, we find that for
all integers $k,n\geq 0$, $ \overline{ pp}(
2^{6k}(48n+20) ) \equiv \overline{ pp}( 2^{6k }(384n+32))
\equiv \overline{pp}( 2^{3k}(48n+36))\equiv 0 \pmod 9. $
Keywords:
overline denote number overpartition pairs bringmann lovejoy proved geq overline equiv pmod proved there infinitely many ramanujan type congruences modulo every power odd primes overline recently chen lin established ramanujan type identities explicit congruences overline furthermore constructed infinite families congruences overline modulo nbsp nbsp congruence relations modulo nbsp paper prove several infinite families congruences modulo nbsp overline example integers geq overline equiv overline equiv overline equiv pmod
Affiliations des auteurs :
Ernest X. W. Xia 1
@article{10_4064_cm140_1_8,
author = {Ernest X. W. Xia},
title = {New infinite families of {Ramanujan-type} congruences modulo 9 for overpartition pairs},
journal = {Colloquium Mathematicum},
pages = {91--105},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {2015},
doi = {10.4064/cm140-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-8/}
}
TY - JOUR AU - Ernest X. W. Xia TI - New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs JO - Colloquium Mathematicum PY - 2015 SP - 91 EP - 105 VL - 140 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-8/ DO - 10.4064/cm140-1-8 LA - en ID - 10_4064_cm140_1_8 ER -
%0 Journal Article %A Ernest X. W. Xia %T New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs %J Colloquium Mathematicum %D 2015 %P 91-105 %V 140 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-8/ %R 10.4064/cm140-1-8 %G en %F 10_4064_cm140_1_8
Ernest X. W. Xia. New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs. Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 91-105. doi: 10.4064/cm140-1-8
Cité par Sources :