Range of a contractive strongly positive projection in a $C^*$-algebra
Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 87-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize a result of Choi and Effros on the range of a contractive completely positive projection in a $C^*$-algebra to the case when this projection is only strongly positive using, moreover, an elementary argument instead of a $2\times 2$-matrix technique.
Keywords:
generalize result choi effros range contractive completely positive projection * algebra projection only strongly positive using moreover elementary argument instead times matrix technique
Affiliations des auteurs :
Andrzej Łuczak 1
@article{10_4064_cm140_1_7,
author = {Andrzej {\L}uczak},
title = {Range of a contractive strongly positive projection in a $C^*$-algebra},
journal = {Colloquium Mathematicum},
pages = {87--89},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {2015},
doi = {10.4064/cm140-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-7/}
}
TY - JOUR AU - Andrzej Łuczak TI - Range of a contractive strongly positive projection in a $C^*$-algebra JO - Colloquium Mathematicum PY - 2015 SP - 87 EP - 89 VL - 140 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-7/ DO - 10.4064/cm140-1-7 LA - en ID - 10_4064_cm140_1_7 ER -
Andrzej Łuczak. Range of a contractive strongly positive projection in a $C^*$-algebra. Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 87-89. doi: 10.4064/cm140-1-7
Cité par Sources :