On modules and rings
with the restricted minimum condition
Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 75-86
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A module $M$ satisfies the restricted minimum condition if $M/N$ is artinian for every essential submodule $N$ of $M$. A ring $R$ is called a right RM-ring whenever $R_R$ satisfies the restricted minimum condition as a right module. We give several structural necessary conditions for particular classes of RM-rings. Furthermore, a commutative ring $R$ is proved to be an RM-ring if and only if
$R/\operatorname {Soc}(R)$ is noetherian and every singular module is semiartinian.
Keywords:
module satisfies restricted minimum condition artinian every essential submodule ring called right rm ring whenever satisfies restricted minimum condition right module several structural necessary conditions particular classes rm rings furthermore commutative ring proved rm ring only operatorname soc noetherian every singular module semiartinian
Affiliations des auteurs :
M. Tamer Koşan 1 ; Jan Žemlička 2
@article{10_4064_cm140_1_6,
author = {M. Tamer Ko\c{s}an and Jan \v{Z}emli\v{c}ka},
title = {On modules and rings
with the restricted minimum condition},
journal = {Colloquium Mathematicum},
pages = {75--86},
year = {2015},
volume = {140},
number = {1},
doi = {10.4064/cm140-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-6/}
}
TY - JOUR AU - M. Tamer Koşan AU - Jan Žemlička TI - On modules and rings with the restricted minimum condition JO - Colloquium Mathematicum PY - 2015 SP - 75 EP - 86 VL - 140 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-6/ DO - 10.4064/cm140-1-6 LA - en ID - 10_4064_cm140_1_6 ER -
M. Tamer Koşan; Jan Žemlička. On modules and rings with the restricted minimum condition. Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 75-86. doi: 10.4064/cm140-1-6
Cité par Sources :