Multiparameter ergodic Cesàro-$\alpha $ averages
Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 15-29
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Net $(X,{\mathcal F},\nu)$ be a $\sigma$-finite measure space.
Associated with
$k$ Lamperti operators on $L^p(\nu)$, $T_1,\ldots, T_k$, $\bar{n}=(n_1, \ldots, n_k) \in
\mathbb{N}^k$ and $\bar{\alpha}=(\alpha_1,\ldots,\alpha_k)$ with
$0\alpha_j\leq 1$, we define the ergodic Cesàro-$\bar{\alpha}$
averages
$$ \mathcal{ R}_{\bar{n},\bar{\alpha}}f=
\frac{1}{\prod_{j=1}^{k}A_{n_j}^{\alpha_j}}
\sum_{i_k=0}^{n_k}\cdots\sum_{i_1=0}^{n_1}
\prod_{j=1}^{k}A_{n_j-i_j}^{\alpha_j-1}T_k^{i_k}\cdots
T_1^{i_1}f.$$
For these averages we prove the
almost everywhere convergence on $X$ and the convergence in the $L^p(\nu)$ norm, when $n_1, \ldots ,n_k \to \infty$ independently, for all $f\in L^p(d\nu)$ with
$p>1/\alpha_*$ where $\alpha_*=\min_{1\leq j\leq k}\alpha_j$. In the limit case $p=1/\alpha_*$, we prove that the
averages $ \mathcal{ R}_{\bar{n},\bar{\alpha}}f$ converge almost
everywhere on $X$ for all $f$ in the Orlicz–Lorentz space
$\varLambda({1}/{\alpha_*},\varphi_{m-1})$ with
$\varphi_m(t)=t(1+\log^+t)^m$. To obtain the result in the limit case we need to study inequalities for the composition of operators $T_i$ that are of restricted weak type $(p_i,p_i)$. As another application of
these inequalities we also study the strong Cesàro-$\bar{\alpha}$ continuity of functions.
Keywords:
net mathcal sigma finite measure space associated lamperti operators ldots bar ldots mathbb bar alpha alpha ldots alpha alpha leq define ergodic ces ro bar alpha averages mathcal bar bar alpha frac prod alpha sum cdots sum prod j i alpha j cdots these averages prove almost everywhere convergence convergence norm ldots infty independently alpha * where alpha * min leq leq alpha limit alpha * prove averages mathcal bar bar alpha converge almost everywhere orlicz lorentz space varlambda alpha * varphi m varphi log obtain result limit study inequalities composition operators restricted weak type i another application these inequalities study strong ces ro bar alpha continuity functions
Affiliations des auteurs :
A. L. Bernardis 1 ; R. Crescimbeni 2 ; C. Ferrari Freire 2
@article{10_4064_cm140_1_3,
author = {A. L. Bernardis and R. Crescimbeni and C. Ferrari Freire},
title = {Multiparameter ergodic {Ces\`aro-}$\alpha $ averages},
journal = {Colloquium Mathematicum},
pages = {15--29},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {2015},
doi = {10.4064/cm140-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-3/}
}
TY - JOUR AU - A. L. Bernardis AU - R. Crescimbeni AU - C. Ferrari Freire TI - Multiparameter ergodic Cesàro-$\alpha $ averages JO - Colloquium Mathematicum PY - 2015 SP - 15 EP - 29 VL - 140 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-3/ DO - 10.4064/cm140-1-3 LA - en ID - 10_4064_cm140_1_3 ER -
%0 Journal Article %A A. L. Bernardis %A R. Crescimbeni %A C. Ferrari Freire %T Multiparameter ergodic Cesàro-$\alpha $ averages %J Colloquium Mathematicum %D 2015 %P 15-29 %V 140 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-3/ %R 10.4064/cm140-1-3 %G en %F 10_4064_cm140_1_3
A. L. Bernardis; R. Crescimbeni; C. Ferrari Freire. Multiparameter ergodic Cesàro-$\alpha $ averages. Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 15-29. doi: 10.4064/cm140-1-3
Cité par Sources :