Subsequence sums of zero-sum free sequences over finite abelian groups
Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 119-127
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a finite abelian group of rank $r$ and let $X$ be a zero-sum free sequence over $G$ whose support $\mathrm {supp}(X)$ generates $G$. In 2009, Pixton proved that $|\varSigma (X)|\geq 2^{r-1}(|X|-r+2)-1$ for $r \le 3$. We show that this result also holds for abelian groups $G$ of rank $4$ if the smallest prime $p$ dividing $|G|$ satisfies $p\geq 13$.
Keywords:
finite abelian group rank zero sum sequence whose support mathrm supp generates pixton proved varsigma geq r r result holds abelian groups rank smallest prime dividing satisfies geq
Affiliations des auteurs :
Yongke Qu 1 ; Xingwu Xia 1 ; Lin Xue 1 ; Qinghai Zhong 2
@article{10_4064_cm140_1_10,
author = {Yongke Qu and Xingwu Xia and Lin Xue and Qinghai Zhong},
title = {Subsequence sums of zero-sum free sequences over finite abelian groups},
journal = {Colloquium Mathematicum},
pages = {119--127},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {2015},
doi = {10.4064/cm140-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-10/}
}
TY - JOUR AU - Yongke Qu AU - Xingwu Xia AU - Lin Xue AU - Qinghai Zhong TI - Subsequence sums of zero-sum free sequences over finite abelian groups JO - Colloquium Mathematicum PY - 2015 SP - 119 EP - 127 VL - 140 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-10/ DO - 10.4064/cm140-1-10 LA - en ID - 10_4064_cm140_1_10 ER -
%0 Journal Article %A Yongke Qu %A Xingwu Xia %A Lin Xue %A Qinghai Zhong %T Subsequence sums of zero-sum free sequences over finite abelian groups %J Colloquium Mathematicum %D 2015 %P 119-127 %V 140 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm140-1-10/ %R 10.4064/cm140-1-10 %G en %F 10_4064_cm140_1_10
Yongke Qu; Xingwu Xia; Lin Xue; Qinghai Zhong. Subsequence sums of zero-sum free sequences over finite abelian groups. Colloquium Mathematicum, Tome 140 (2015) no. 1, pp. 119-127. doi: 10.4064/cm140-1-10
Cité par Sources :