Turán's problem and Ramsey numbers for trees
Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 273-298
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $T_n^1=(V,E_1)$ and $T_n^2=(V,E_2)$ be the trees on $n$ vertices with $V=\{v_0,v_1,\ldots ,v_{n-1}\}$, $E_1=\{v_0v_1,\ldots ,v_0v_{n-3},v_{n-4}v_{n-2},v_{n-3}v_{n-1}\}$ and $E_2=\{v_0v_1,\ldots ,$ $v_0v_{n-3},v_{n-3}v_{n-2}, v_{n-3} v_{n-1}\}$. For $p\ge n\ge 5$ we obtain explicit formulas for ${\rm ex}(p;T_n^1)$ and ${\rm ex}(p;T_n^2)$, where ${\rm ex}(p;L)$ denotes the maximal number of edges in a graph of order $p$ not containing $L$ as a subgraph. Let $r(G_ 1, G_ 2)$ be the Ramsey number of the two graphs $G_1$ and $G_2$. We also obtain some explicit formulas for $r(T_m,T_n^i)$, where $i\in \{1,2\}$ and $T_m$ is a tree on $m$ vertices with $\varDelta (T_m)\le m-3$.
Keywords:
trees vertices ldots n ldots n n n n n ldots n n n n n obtain explicit formulas where denotes maximal number edges graph order containing subgraph ramsey number graphs obtain explicit formulas t where tree vertices vardelta m
Affiliations des auteurs :
Zhi-Hong Sun 1 ; Lin-Lin Wang 2 ; Yi-Li Wu 1
@article{10_4064_cm139_2_8,
author = {Zhi-Hong Sun and Lin-Lin Wang and Yi-Li Wu},
title = {Tur\'an's problem and {Ramsey} numbers for trees},
journal = {Colloquium Mathematicum},
pages = {273--298},
year = {2015},
volume = {139},
number = {2},
doi = {10.4064/cm139-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-8/}
}
TY - JOUR AU - Zhi-Hong Sun AU - Lin-Lin Wang AU - Yi-Li Wu TI - Turán's problem and Ramsey numbers for trees JO - Colloquium Mathematicum PY - 2015 SP - 273 EP - 298 VL - 139 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-8/ DO - 10.4064/cm139-2-8 LA - en ID - 10_4064_cm139_2_8 ER -
Zhi-Hong Sun; Lin-Lin Wang; Yi-Li Wu. Turán's problem and Ramsey numbers for trees. Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 273-298. doi: 10.4064/cm139-2-8
Cité par Sources :