Asymptotic period in dynamical systems in metric spaces
Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 245-257.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce the notions of asymptotic period and asymptotically periodic orbits in metric spaces. We study some properties of these notions and their connections with $\omega $-limit sets. We also discuss the notion of growth rate of such orbits and describe its properties in an extreme case.
DOI : 10.4064/cm139-2-6
Keywords: introduce notions asymptotic period asymptotically periodic orbits metric spaces study properties these notions their connections omega limit sets discuss notion growth rate orbits describe its properties extreme

Karol Gryszka 1

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_cm139_2_6,
     author = {Karol Gryszka},
     title = {Asymptotic period in dynamical systems in metric spaces},
     journal = {Colloquium Mathematicum},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2015},
     doi = {10.4064/cm139-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-6/}
}
TY  - JOUR
AU  - Karol Gryszka
TI  - Asymptotic period in dynamical systems in metric spaces
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 245
EP  - 257
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-6/
DO  - 10.4064/cm139-2-6
LA  - en
ID  - 10_4064_cm139_2_6
ER  - 
%0 Journal Article
%A Karol Gryszka
%T Asymptotic period in dynamical systems in metric spaces
%J Colloquium Mathematicum
%D 2015
%P 245-257
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-6/
%R 10.4064/cm139-2-6
%G en
%F 10_4064_cm139_2_6
Karol Gryszka. Asymptotic period in dynamical systems in metric spaces. Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 245-257. doi : 10.4064/cm139-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-6/

Cité par Sources :