Regularity and decay of 3D incompressible
MHD equations with nonlinear damping terms
Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 185-203
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the existence and uniqueness of global strong solutions to the Cauchy problem for 3D incompressible MHD equations with nonlinear damping terms. Moreover, the preliminary $L^{2}$ decay for weak solutions is also established.
Keywords:
prove existence uniqueness global strong solutions cauchy problem incompressible mhd equations nonlinear damping terms moreover preliminary decay weak solutions established
Affiliations des auteurs :
Zhuan Ye 1
@article{10_4064_cm139_2_3,
author = {Zhuan Ye},
title = {Regularity and decay of {3D} incompressible
{MHD} equations with nonlinear damping terms},
journal = {Colloquium Mathematicum},
pages = {185--203},
publisher = {mathdoc},
volume = {139},
number = {2},
year = {2015},
doi = {10.4064/cm139-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-3/}
}
TY - JOUR AU - Zhuan Ye TI - Regularity and decay of 3D incompressible MHD equations with nonlinear damping terms JO - Colloquium Mathematicum PY - 2015 SP - 185 EP - 203 VL - 139 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-3/ DO - 10.4064/cm139-2-3 LA - en ID - 10_4064_cm139_2_3 ER -
Zhuan Ye. Regularity and decay of 3D incompressible MHD equations with nonlinear damping terms. Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 185-203. doi: 10.4064/cm139-2-3
Cité par Sources :