Regularity and decay of 3D incompressible MHD equations with nonlinear damping terms
Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 185-203.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence and uniqueness of global strong solutions to the Cauchy problem for 3D incompressible MHD equations with nonlinear damping terms. Moreover, the preliminary $L^{2}$ decay for weak solutions is also established.
DOI : 10.4064/cm139-2-3
Keywords: prove existence uniqueness global strong solutions cauchy problem incompressible mhd equations nonlinear damping terms moreover preliminary decay weak solutions established

Zhuan Ye 1

1 School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875, People's Republic of China
@article{10_4064_cm139_2_3,
     author = {Zhuan Ye},
     title = {Regularity and decay of {3D} incompressible
 {MHD} equations with nonlinear damping terms},
     journal = {Colloquium Mathematicum},
     pages = {185--203},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2015},
     doi = {10.4064/cm139-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-3/}
}
TY  - JOUR
AU  - Zhuan Ye
TI  - Regularity and decay of 3D incompressible
 MHD equations with nonlinear damping terms
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 185
EP  - 203
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-3/
DO  - 10.4064/cm139-2-3
LA  - en
ID  - 10_4064_cm139_2_3
ER  - 
%0 Journal Article
%A Zhuan Ye
%T Regularity and decay of 3D incompressible
 MHD equations with nonlinear damping terms
%J Colloquium Mathematicum
%D 2015
%P 185-203
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-3/
%R 10.4064/cm139-2-3
%G en
%F 10_4064_cm139_2_3
Zhuan Ye. Regularity and decay of 3D incompressible
 MHD equations with nonlinear damping terms. Colloquium Mathematicum, Tome 139 (2015) no. 2, pp. 185-203. doi : 10.4064/cm139-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm139-2-3/

Cité par Sources :