Some congruences involving binomial coefficients
Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 127-136
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Binomial coefficients and central trinomial coefficients play important roles in combinatorics.
Let $p>3$ be a prime. We show that
$$T_{p-1}\equiv\bigg(\frac p3\bigg)3^{p-1}\pmod{p^2},$$
where the central trinomial coefficient $T_n$ is the constant term in the expansion of $(1+x+x^{-1})^n$.
We also prove three congruences modulo $p^3$ conjectured by Sun, one of which is
$$\sum_{k=0}^{p-1}\binom{p-1}k\binom{2k}k((-1)^k-(-3)^{-k})\equiv
\bigg(\frac p3\bigg)(3^{p-1}-1)\pmod{p^3}.$$
In addition, we get some new combinatorial identities.
Keywords:
binomial coefficients central trinomial coefficients play important roles combinatorics prime p equiv bigg frac bigg p pmod where central trinomial coefficient constant term expansion prove three congruences modulo conjectured sun which sum p binom p binom k k equiv bigg frac bigg p pmod addition get combinatorial identities
Affiliations des auteurs :
Hui-Qin Cao 1 ; Zhi-Wei Sun 2
@article{10_4064_cm139_1_8,
author = {Hui-Qin Cao and Zhi-Wei Sun},
title = {Some congruences involving binomial coefficients},
journal = {Colloquium Mathematicum},
pages = {127--136},
year = {2015},
volume = {139},
number = {1},
doi = {10.4064/cm139-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-8/}
}
Hui-Qin Cao; Zhi-Wei Sun. Some congruences involving binomial coefficients. Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 127-136. doi: 10.4064/cm139-1-8
Cité par Sources :