A note on the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y=(3m)^z$
Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 121-126
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $m$ be a positive integer. Using an upper bound for the solutions of generalized Ramanujan–Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if $3\nmid m$, then the equation $(4m^2+1)^x+(5m^2-1)^y=(3m)^z$ has only the positive integer solution $(x,y,z)=(1,1,2)$.
Keywords:
positive integer using upper bound solutions generalized ramanujan nagell equations given bugeaud shorey prove nmid equation has only positive integer solution
Affiliations des auteurs :
Jianping Wang 1 ; Tingting Wang 2 ; Wenpeng Zhang 2
@article{10_4064_cm139_1_7,
author = {Jianping Wang and Tingting Wang and Wenpeng Zhang},
title = {A note on the exponential {Diophantine} equation $(4m^2+1)^x+(5m^2-1)^y=(3m)^z$},
journal = {Colloquium Mathematicum},
pages = {121--126},
year = {2015},
volume = {139},
number = {1},
doi = {10.4064/cm139-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-7/}
}
TY - JOUR AU - Jianping Wang AU - Tingting Wang AU - Wenpeng Zhang TI - A note on the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y=(3m)^z$ JO - Colloquium Mathematicum PY - 2015 SP - 121 EP - 126 VL - 139 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-7/ DO - 10.4064/cm139-1-7 LA - en ID - 10_4064_cm139_1_7 ER -
%0 Journal Article %A Jianping Wang %A Tingting Wang %A Wenpeng Zhang %T A note on the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y=(3m)^z$ %J Colloquium Mathematicum %D 2015 %P 121-126 %V 139 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-7/ %R 10.4064/cm139-1-7 %G en %F 10_4064_cm139_1_7
Jianping Wang; Tingting Wang; Wenpeng Zhang. A note on the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y=(3m)^z$. Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 121-126. doi: 10.4064/cm139-1-7
Cité par Sources :