Differential smoothness of affine Hopf algebras of Gelfand–Kirillov dimension two
Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 111-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand–Kirillov dimension two which are not polynomial identity rings are differentially smooth.
Keywords:
two dimensional integrable differential calculi classes ore extensions polynomial ring laurent polynomial ring variable constructed concluded affine pointed hopf domains gelfand kirillov dimension which polynomial identity rings differentially smooth
Affiliations des auteurs :
Tomasz Brzeziński 1
@article{10_4064_cm139_1_6,
author = {Tomasz Brzezi\'nski},
title = {Differential smoothness of affine {Hopf} algebras of {Gelfand{\textendash}Kirillov} dimension two},
journal = {Colloquium Mathematicum},
pages = {111--119},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2015},
doi = {10.4064/cm139-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-6/}
}
TY - JOUR AU - Tomasz Brzeziński TI - Differential smoothness of affine Hopf algebras of Gelfand–Kirillov dimension two JO - Colloquium Mathematicum PY - 2015 SP - 111 EP - 119 VL - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-6/ DO - 10.4064/cm139-1-6 LA - en ID - 10_4064_cm139_1_6 ER -
Tomasz Brzeziński. Differential smoothness of affine Hopf algebras of Gelfand–Kirillov dimension two. Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 111-119. doi: 10.4064/cm139-1-6
Cité par Sources :