A hypersurface defect relation for
a family of meromorphic maps
on a generalized $p$-parabolic manifold
Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 95-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper establishes a hypersurface defect relation, that is, $ \sum_{j=1}^q \delta(D_j, f)
\leq(n+1)/d$, for a family of meromorphic maps from a generalized $p$-parabolic manifold $M$ to the projective space
$\mathbb P^n$, under some weak non-degeneracy assumptions.
Keywords:
paper establishes hypersurface defect relation sum delta leq family meromorphic maps generalized p parabolic manifold nbsp projective space mathbb under weak non degeneracy assumptions
Affiliations des auteurs :
Qi Han 1
@article{10_4064_cm139_1_5,
author = {Qi Han},
title = {A hypersurface defect relation for
a family of meromorphic maps
on a generalized $p$-parabolic manifold},
journal = {Colloquium Mathematicum},
pages = {95--110},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2015},
doi = {10.4064/cm139-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-5/}
}
TY - JOUR AU - Qi Han TI - A hypersurface defect relation for a family of meromorphic maps on a generalized $p$-parabolic manifold JO - Colloquium Mathematicum PY - 2015 SP - 95 EP - 110 VL - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-5/ DO - 10.4064/cm139-1-5 LA - en ID - 10_4064_cm139_1_5 ER -
%0 Journal Article %A Qi Han %T A hypersurface defect relation for a family of meromorphic maps on a generalized $p$-parabolic manifold %J Colloquium Mathematicum %D 2015 %P 95-110 %V 139 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-5/ %R 10.4064/cm139-1-5 %G en %F 10_4064_cm139_1_5
Qi Han. A hypersurface defect relation for a family of meromorphic maps on a generalized $p$-parabolic manifold. Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 95-110. doi: 10.4064/cm139-1-5
Cité par Sources :