Cohomological dimension filtration and annihilators of top local cohomology modules
Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 25-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathfrak a$ denote an ideal in a Noetherian ring $R$, and $M$ a finitely generated $R$-module. We introduce the concept of the cohomological dimension filtration $\mathscr {M} =\{M_i\}_{i=0}^c$, where $ c=\mathop {\rm cd}\nolimits (\mathfrak a,M)$ and $M_i$ denotes the largest submodule of $M$ such that $\mathop {\rm cd}\nolimits (\mathfrak a,M_i)\leq i.$ Some properties of this filtration are investigated. In particular, if $(R, \mathfrak m)$ is local and $c= \dim M$, we are able to determine the annihilator of the top local cohomology module $H_{\mathfrak a}^c(M)$, namely ${\rm Ann}_R(H_{\mathfrak a}^c(M))= {\rm Ann}_R(M/M_{c-1}).$ As a consequence, there exists an ideal $\mathfrak b$ of $R$ such that ${\rm Ann}_R(H_{\mathfrak a}^{c}(M))={\rm Ann}_R(M/H_{\mathfrak b}^{0}(M))$. This generalizes the main results of Bahmanpour et al. (2012) and Lynch (2012).
DOI : 10.4064/cm139-1-2
Keywords: mathfrak denote ideal noetherian ring finitely generated r module introduce concept cohomological dimension filtration mathscr where mathop nolimits mathfrak denotes largest submodule mathop nolimits mathfrak leq properties filtration investigated particular mathfrak local dim able determine annihilator top local cohomology module mathfrak namely ann mathfrak ann consequence there exists ideal mathfrak ann mathfrak ann mathfrak generalizes main results bahmanpour lynch

Ali Atazadeh 1 ; Monireh Sedghi 1 ; Reza Naghipour 2

1 Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran
2 Department of Mathematics University of Tabriz Tabriz, Iran
@article{10_4064_cm139_1_2,
     author = {Ali Atazadeh and Monireh Sedghi and Reza Naghipour},
     title = {Cohomological dimension filtration and annihilators of top local cohomology modules},
     journal = {Colloquium Mathematicum},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2015},
     doi = {10.4064/cm139-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-2/}
}
TY  - JOUR
AU  - Ali Atazadeh
AU  - Monireh Sedghi
AU  - Reza Naghipour
TI  - Cohomological dimension filtration and annihilators of top local cohomology modules
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 25
EP  - 35
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-2/
DO  - 10.4064/cm139-1-2
LA  - en
ID  - 10_4064_cm139_1_2
ER  - 
%0 Journal Article
%A Ali Atazadeh
%A Monireh Sedghi
%A Reza Naghipour
%T Cohomological dimension filtration and annihilators of top local cohomology modules
%J Colloquium Mathematicum
%D 2015
%P 25-35
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-2/
%R 10.4064/cm139-1-2
%G en
%F 10_4064_cm139_1_2
Ali Atazadeh; Monireh Sedghi; Reza Naghipour. Cohomological dimension filtration and annihilators of top local cohomology modules. Colloquium Mathematicum, Tome 139 (2015) no. 1, pp. 25-35. doi : 10.4064/cm139-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm139-1-2/

Cité par Sources :