Representation numbers of five sextenary quadratic forms
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 247-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For nonnegative integers $a, b, c$ and positive integer $n$, let $N(a,b,c;n)$ denote the number of representations of $n$ by the form $$ \sum_{i=1}^a (x_i^2+x_iy_i+y_i^2)+2\sum_{j=1}^b(u_j^2+u_jv_j+v_j^2) +4\sum_{k=1}^c(r_k^2+r_ks_k+s_k^2). $$ Explicit formulas for $N(a,b,c;n)$ for some small values were determined by Alaca, Alaca and Williams, by Chan and Cooper, by Köklüce, and by Lomadze. We establish formulas for $N(2,1,0;n)$, $N(2,0,1;n)$, $N(1,2,0;n)$, $N(1,0,2;n)$ and $N(1,1,1;n)$ by employing the $(p, k)$-parametrization of three 2-dimensional theta functions due to Alaca, Alaca and Williams.
DOI : 10.4064/cm138-2-9
Keywords: nonnegative integers positive integer c denote number representations form sum sum sum explicit formulas c small values determined alaca alaca williams chan cooper lomadze establish formulas employing parametrization three dimensional theta functions due alaca alaca williams

Ernest X. W. Xia 1 ; Olivia X. M. Yao 2 ; A. F. Y. Zhao 3

1 Department of Mathematics Jiangsu University Zhenjiang, Jiangsu 212013, P. R. China
2 Department of Mathematics Jiangsu University Jiangsu, Zhenjiang 212013, P. R. China
3 School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P. R. China
@article{10_4064_cm138_2_9,
     author = {Ernest X. W. Xia and Olivia X. M. Yao and A. F. Y. Zhao},
     title = {Representation numbers of
 five sextenary quadratic forms},
     journal = {Colloquium Mathematicum},
     pages = {247--254},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/}
}
TY  - JOUR
AU  - Ernest X. W. Xia
AU  - Olivia X. M. Yao
AU  - A. F. Y. Zhao
TI  - Representation numbers of
 five sextenary quadratic forms
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 247
EP  - 254
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/
DO  - 10.4064/cm138-2-9
LA  - en
ID  - 10_4064_cm138_2_9
ER  - 
%0 Journal Article
%A Ernest X. W. Xia
%A Olivia X. M. Yao
%A A. F. Y. Zhao
%T Representation numbers of
 five sextenary quadratic forms
%J Colloquium Mathematicum
%D 2015
%P 247-254
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/
%R 10.4064/cm138-2-9
%G en
%F 10_4064_cm138_2_9
Ernest X. W. Xia; Olivia X. M. Yao; A. F. Y. Zhao. Representation numbers of
 five sextenary quadratic forms. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 247-254. doi : 10.4064/cm138-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/

Cité par Sources :