Representation numbers of
five sextenary quadratic forms
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 247-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For nonnegative integers $a, b, c$ and positive integer $n$,
let $N(a,b,c;n)$ denote the number of representations of
$n$ by the form
$$
\sum_{i=1}^a (x_i^2+x_iy_i+y_i^2)+2\sum_{j=1}^b(u_j^2+u_jv_j+v_j^2)
+4\sum_{k=1}^c(r_k^2+r_ks_k+s_k^2).
$$
Explicit formulas for $N(a,b,c;n)$ for some small values were
determined by Alaca, Alaca and Williams, by Chan and Cooper,
by Köklüce, and by Lomadze. We establish formulas
for $N(2,1,0;n)$, $N(2,0,1;n)$, $N(1,2,0;n)$, $N(1,0,2;n)$ and
$N(1,1,1;n)$ by employing the $(p, k)$-parametrization of three
2-dimensional theta functions due to Alaca, Alaca and Williams.
Keywords:
nonnegative integers positive integer c denote number representations form sum sum sum explicit formulas c small values determined alaca alaca williams chan cooper lomadze establish formulas employing parametrization three dimensional theta functions due alaca alaca williams
Affiliations des auteurs :
Ernest X. W. Xia 1 ; Olivia X. M. Yao 2 ; A. F. Y. Zhao 3
@article{10_4064_cm138_2_9,
author = {Ernest X. W. Xia and Olivia X. M. Yao and A. F. Y. Zhao},
title = {Representation numbers of
five sextenary quadratic forms},
journal = {Colloquium Mathematicum},
pages = {247--254},
publisher = {mathdoc},
volume = {138},
number = {2},
year = {2015},
doi = {10.4064/cm138-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/}
}
TY - JOUR AU - Ernest X. W. Xia AU - Olivia X. M. Yao AU - A. F. Y. Zhao TI - Representation numbers of five sextenary quadratic forms JO - Colloquium Mathematicum PY - 2015 SP - 247 EP - 254 VL - 138 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/ DO - 10.4064/cm138-2-9 LA - en ID - 10_4064_cm138_2_9 ER -
%0 Journal Article %A Ernest X. W. Xia %A Olivia X. M. Yao %A A. F. Y. Zhao %T Representation numbers of five sextenary quadratic forms %J Colloquium Mathematicum %D 2015 %P 247-254 %V 138 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-9/ %R 10.4064/cm138-2-9 %G en %F 10_4064_cm138_2_9
Ernest X. W. Xia; Olivia X. M. Yao; A. F. Y. Zhao. Representation numbers of five sextenary quadratic forms. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 247-254. doi: 10.4064/cm138-2-9
Cité par Sources :