On weakly locally uniformly rotund norms which are not locally uniformly rotund
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 241-246.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that every infinite-dimensional Banach space with separable dual admits an equivalent norm which is weakly locally uniformly rotund but not locally uniformly rotund.
DOI : 10.4064/cm138-2-8
Keywords: every infinite dimensional banach space separable dual admits equivalent norm which weakly locally uniformly rotund locally uniformly rotund

Szymon Draga 1

1 Institute of Mathematics University of Silesia Bankowa 14 40-007 Katowice, Poland
@article{10_4064_cm138_2_8,
     author = {Szymon Draga},
     title = {On weakly locally uniformly rotund norms which are not locally uniformly rotund},
     journal = {Colloquium Mathematicum},
     pages = {241--246},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-8/}
}
TY  - JOUR
AU  - Szymon Draga
TI  - On weakly locally uniformly rotund norms which are not locally uniformly rotund
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 241
EP  - 246
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-8/
DO  - 10.4064/cm138-2-8
LA  - en
ID  - 10_4064_cm138_2_8
ER  - 
%0 Journal Article
%A Szymon Draga
%T On weakly locally uniformly rotund norms which are not locally uniformly rotund
%J Colloquium Mathematicum
%D 2015
%P 241-246
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-8/
%R 10.4064/cm138-2-8
%G en
%F 10_4064_cm138_2_8
Szymon Draga. On weakly locally uniformly rotund norms which are not locally uniformly rotund. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 241-246. doi : 10.4064/cm138-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-8/

Cité par Sources :