On weakly locally uniformly rotund norms which are not locally uniformly rotund
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 241-246
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that every infinite-dimensional Banach space with separable dual admits an equivalent norm which is weakly locally uniformly rotund but not locally uniformly rotund.
Keywords:
every infinite dimensional banach space separable dual admits equivalent norm which weakly locally uniformly rotund locally uniformly rotund
Affiliations des auteurs :
Szymon Draga 1
@article{10_4064_cm138_2_8,
author = {Szymon Draga},
title = {On weakly locally uniformly rotund norms which are not locally uniformly rotund},
journal = {Colloquium Mathematicum},
pages = {241--246},
year = {2015},
volume = {138},
number = {2},
doi = {10.4064/cm138-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-8/}
}
TY - JOUR AU - Szymon Draga TI - On weakly locally uniformly rotund norms which are not locally uniformly rotund JO - Colloquium Mathematicum PY - 2015 SP - 241 EP - 246 VL - 138 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-8/ DO - 10.4064/cm138-2-8 LA - en ID - 10_4064_cm138_2_8 ER -
Szymon Draga. On weakly locally uniformly rotund norms which are not locally uniformly rotund. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 241-246. doi: 10.4064/cm138-2-8
Cité par Sources :