A note on the Hyers–Ulam problem
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 233-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X,Y$ be real Banach spaces and $\varepsilon >0$. Suppose that $f:X\rightarrow Y$ is a surjective map satisfying $|\|f(x)-f(y)\| -\| x-y\| |\leq \varepsilon $ for all $x,y\in X$. Hyers and Ulam asked whether there exists an isometry $U$ and a constant $K$ such that $\| f(x)-Ux\| \leq K\varepsilon $ for all $x\in X$. It is well-known that the answer to the Hyers–Ulam problem is positive and $K=2$ is the best possible solution with assumption $f(0)=U0=0$. In this paper, using the idea of Figiel's theorem on nonsurjective isometries, we give a new proof of this result.
DOI : 10.4064/cm138-2-7
Keywords: real banach spaces varepsilon suppose rightarrow surjective map satisfying f x y leq varepsilon hyers ulam asked whether there exists isometry constant ux leq varepsilon well known answer hyers ulam problem positive best possible solution assumption paper using idea figiels theorem nonsurjective isometries proof result

Yunbai Dong 1

1 School of Mathematics and Computer Science Wuhan Textile University Wuhan 430073, China
@article{10_4064_cm138_2_7,
     author = {Yunbai Dong},
     title = {A note on the {Hyers{\textendash}Ulam} problem},
     journal = {Colloquium Mathematicum},
     pages = {233--239},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-7/}
}
TY  - JOUR
AU  - Yunbai Dong
TI  - A note on the Hyers–Ulam problem
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 233
EP  - 239
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-7/
DO  - 10.4064/cm138-2-7
LA  - en
ID  - 10_4064_cm138_2_7
ER  - 
%0 Journal Article
%A Yunbai Dong
%T A note on the Hyers–Ulam problem
%J Colloquium Mathematicum
%D 2015
%P 233-239
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-7/
%R 10.4064/cm138-2-7
%G en
%F 10_4064_cm138_2_7
Yunbai Dong. A note on the Hyers–Ulam problem. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 233-239. doi : 10.4064/cm138-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-7/

Cité par Sources :