On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 217-231.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if $R$ is a local $U$-ring and $M$ is an Artinian $R$-module, then $M$ is a co-Gorenstein $R$-module if and only if the complex ${\rm Hom}_{\hat{R}}(\mathcal{C}(\mathcal{U},\hat{R}),M)$ is a minimal flat resolution for $M$ when we choose a suitable triangular subset $\mathcal{U}$ on $\hat{R}$. Moreover we characterize the co-Gorenstein modules over a local $U$-ring and Cohen–Macaulay local $U$-ring.
DOI : 10.4064/cm138-2-6
Keywords: dual gorenstein module called co gorenstein module defined lingguang paper prove local u ring artinian r module co gorenstein r module only complex hom hat mathcal mathcal hat minimal flat resolution choose suitable triangular subset mathcal hat moreover characterize co gorenstein modules local u ring cohen macaulay local u ring

Zahra Heidarian 1 ; Hossein Zakeri 2

1 Department of Mathematics Sciences and Research Branch Islamic Azad University Tehran, Iran
2 Department of Mathematics Faculty of Mathematical Sciences and Computer Kharazmi University Tehran, Iran
@article{10_4064_cm138_2_6,
     author = {Zahra Heidarian and Hossein Zakeri},
     title = {On {co-Gorenstein} modules, minimal flat resolutions
 and dual {Bass} numbers},
     journal = {Colloquium Mathematicum},
     pages = {217--231},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-6/}
}
TY  - JOUR
AU  - Zahra Heidarian
AU  - Hossein Zakeri
TI  - On co-Gorenstein modules, minimal flat resolutions
 and dual Bass numbers
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 217
EP  - 231
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-6/
DO  - 10.4064/cm138-2-6
LA  - en
ID  - 10_4064_cm138_2_6
ER  - 
%0 Journal Article
%A Zahra Heidarian
%A Hossein Zakeri
%T On co-Gorenstein modules, minimal flat resolutions
 and dual Bass numbers
%J Colloquium Mathematicum
%D 2015
%P 217-231
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-6/
%R 10.4064/cm138-2-6
%G en
%F 10_4064_cm138_2_6
Zahra Heidarian; Hossein Zakeri. On co-Gorenstein modules, minimal flat resolutions
 and dual Bass numbers. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 217-231. doi : 10.4064/cm138-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-6/

Cité par Sources :