Maximal function in Beurling–Orlicz and
central Morrey–Orlicz spaces
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 165-181
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define Beurling–Orlicz spaces, weak Beurling–Orlicz spaces, Herz–Orlicz spaces, weak Herz–Orlicz spaces, central Morrey–Orlicz spaces and weak central Morrey–Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy–Littlewood maximal function on these spaces are investigated.
Keywords:
define beurling orlicz spaces weak beurling orlicz spaces herz orlicz spaces weak herz orlicz spaces central morrey orlicz spaces weak central morrey orlicz spaces moreover strong type weak type estimates hardy littlewood maximal function these spaces investigated
Affiliations des auteurs :
Lech Maligranda 1 ; Katsuo Matsuoka 2
@article{10_4064_cm138_2_2,
author = {Lech Maligranda and Katsuo Matsuoka},
title = {Maximal function in {Beurling{\textendash}Orlicz} and
central {Morrey{\textendash}Orlicz} spaces},
journal = {Colloquium Mathematicum},
pages = {165--181},
publisher = {mathdoc},
volume = {138},
number = {2},
year = {2015},
doi = {10.4064/cm138-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/}
}
TY - JOUR AU - Lech Maligranda AU - Katsuo Matsuoka TI - Maximal function in Beurling–Orlicz and central Morrey–Orlicz spaces JO - Colloquium Mathematicum PY - 2015 SP - 165 EP - 181 VL - 138 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/ DO - 10.4064/cm138-2-2 LA - en ID - 10_4064_cm138_2_2 ER -
%0 Journal Article %A Lech Maligranda %A Katsuo Matsuoka %T Maximal function in Beurling–Orlicz and central Morrey–Orlicz spaces %J Colloquium Mathematicum %D 2015 %P 165-181 %V 138 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/ %R 10.4064/cm138-2-2 %G en %F 10_4064_cm138_2_2
Lech Maligranda; Katsuo Matsuoka. Maximal function in Beurling–Orlicz and central Morrey–Orlicz spaces. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 165-181. doi: 10.4064/cm138-2-2
Cité par Sources :