Maximal function in Beurling–Orlicz and central Morrey–Orlicz spaces
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 165-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define Beurling–Orlicz spaces, weak Beurling–Orlicz spaces, Herz–Orlicz spaces, weak Herz–Orlicz spaces, central Morrey–Orlicz spaces and weak central Morrey–Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy–Littlewood maximal function on these spaces are investigated.
DOI : 10.4064/cm138-2-2
Keywords: define beurling orlicz spaces weak beurling orlicz spaces herz orlicz spaces weak herz orlicz spaces central morrey orlicz spaces weak central morrey orlicz spaces moreover strong type weak type estimates hardy littlewood maximal function these spaces investigated

Lech Maligranda 1 ; Katsuo Matsuoka 2

1 Department of Engineering Sciences and Mathematics Luleå University of Technology SE-971 87 Luleå, Sweden
2 College of Economics Nihon University 1-3-2 Misaki-cho, Chiyoda-ku Tokyo 101-8360, Japan
@article{10_4064_cm138_2_2,
     author = {Lech Maligranda and Katsuo Matsuoka},
     title = {Maximal function in {Beurling{\textendash}Orlicz} and
 central {Morrey{\textendash}Orlicz} spaces},
     journal = {Colloquium Mathematicum},
     pages = {165--181},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/}
}
TY  - JOUR
AU  - Lech Maligranda
AU  - Katsuo Matsuoka
TI  - Maximal function in Beurling–Orlicz and
 central Morrey–Orlicz spaces
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 165
EP  - 181
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/
DO  - 10.4064/cm138-2-2
LA  - en
ID  - 10_4064_cm138_2_2
ER  - 
%0 Journal Article
%A Lech Maligranda
%A Katsuo Matsuoka
%T Maximal function in Beurling–Orlicz and
 central Morrey–Orlicz spaces
%J Colloquium Mathematicum
%D 2015
%P 165-181
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/
%R 10.4064/cm138-2-2
%G en
%F 10_4064_cm138_2_2
Lech Maligranda; Katsuo Matsuoka. Maximal function in Beurling–Orlicz and
 central Morrey–Orlicz spaces. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 165-181. doi : 10.4064/cm138-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-2/

Cité par Sources :