The periodicity conjecture for
blocks of group algebras
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 283-294
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe the representation-infinite blocks $B$ of the group algebras $K G$ of finite groups $G$ over algebraically closed fields $K$ for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks $B$ are periodic algebras of period $4$. This confirms the periodicity conjecture for blocks of group algebras.
Keywords:
describe representation infinite blocks group algebras finite groups algebraically closed fields which simple modules periodic respect action syzygy operators particular prove blocks periodic algebras period confirms periodicity conjecture blocks group algebras
Affiliations des auteurs :
Karin Erdmann 1 ; Andrzej Skowroński 2
@article{10_4064_cm138_2_12,
author = {Karin Erdmann and Andrzej Skowro\'nski},
title = {The periodicity conjecture for
blocks of group algebras},
journal = {Colloquium Mathematicum},
pages = {283--294},
publisher = {mathdoc},
volume = {138},
number = {2},
year = {2015},
doi = {10.4064/cm138-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-12/}
}
TY - JOUR AU - Karin Erdmann AU - Andrzej Skowroński TI - The periodicity conjecture for blocks of group algebras JO - Colloquium Mathematicum PY - 2015 SP - 283 EP - 294 VL - 138 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-12/ DO - 10.4064/cm138-2-12 LA - en ID - 10_4064_cm138_2_12 ER -
Karin Erdmann; Andrzej Skowroński. The periodicity conjecture for blocks of group algebras. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 283-294. doi: 10.4064/cm138-2-12
Cité par Sources :