On the prime factors of non-congruent numbers
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 271-282.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give infinitely many new families of non-congruent numbers where the first prime factor of each number is of the form $8k+1$ and the rest of the prime factors have the form $8k+3.$ Products of elements in each family are shown to be non-congruent.
DOI : 10.4064/cm138-2-11
Keywords: infinitely many families non congruent numbers where first prime factor each number form rest prime factors have form products elements each family shown non congruent

Lindsey Reinholz 1 ; Blair K. Spearman 1 ; Qiduan Yang 1

1 Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada V1V 1V7
@article{10_4064_cm138_2_11,
     author = {Lindsey Reinholz and Blair K. Spearman and Qiduan Yang},
     title = {On the prime factors of non-congruent numbers},
     journal = {Colloquium Mathematicum},
     pages = {271--282},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-11/}
}
TY  - JOUR
AU  - Lindsey Reinholz
AU  - Blair K. Spearman
AU  - Qiduan Yang
TI  - On the prime factors of non-congruent numbers
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 271
EP  - 282
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-11/
DO  - 10.4064/cm138-2-11
LA  - en
ID  - 10_4064_cm138_2_11
ER  - 
%0 Journal Article
%A Lindsey Reinholz
%A Blair K. Spearman
%A Qiduan Yang
%T On the prime factors of non-congruent numbers
%J Colloquium Mathematicum
%D 2015
%P 271-282
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-11/
%R 10.4064/cm138-2-11
%G en
%F 10_4064_cm138_2_11
Lindsey Reinholz; Blair K. Spearman; Qiduan Yang. On the prime factors of non-congruent numbers. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 271-282. doi : 10.4064/cm138-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-11/

Cité par Sources :