Weak precompactness and property $(V^*)$ in spaces of compact operators
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 255-269.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give sufficient conditions for subsets of compact operators to be weakly precompact. Let $L_{w^*}(E^*,F)$ (resp. $K_{w^*}(E^*,F)$) denote the set of all $w^*$-$w$ continuous (resp. $w^*$-$w$ continuous compact) operators from $E^*$ to $F$. We prove that if $H$ is a subset of $K_{w^*}(E^*,F)$ such that $H(x^*)$ is relatively weakly compact for each $x^* \in E^*$ and $H^*(y^*)$ is weakly precompact for each $y^* \in F^*$, then $H$ is weakly precompact. We also prove the following results: If $E$ has property $(wV^*)$ and $F$ has property $(V^*)$, then $K_{w^*}(E^*,F)$ has property $(wV^*)$. Suppose that $L_{w^*}(E^*,F)=K_{w^*}(E^*,F)$. Then $K_{w^*}(E^*,F)$ has property $(V^*)$ if and only if $E$ and $F$ have property $(V^*)$.
DOI : 10.4064/cm138-2-10
Keywords: sufficient conditions subsets compact operators weakly precompact * * resp * * denote set * w continuous resp * w continuous compact operators * prove subset * * * relatively weakly compact each * * * * weakly precompact each * * weakly precompact prove following results has property * has property * * * has property * suppose * * * * * * has property * only have property *

Ioana Ghenciu 1

1 Department of Mathematics University of Wisconsin-River Falls River Falls, WI 54022, U.S.A.
@article{10_4064_cm138_2_10,
     author = {Ioana Ghenciu},
     title = {Weak precompactness and property $(V^*)$
 in spaces of compact operators},
     journal = {Colloquium Mathematicum},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/}
}
TY  - JOUR
AU  - Ioana Ghenciu
TI  - Weak precompactness and property $(V^*)$
 in spaces of compact operators
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 255
EP  - 269
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/
DO  - 10.4064/cm138-2-10
LA  - en
ID  - 10_4064_cm138_2_10
ER  - 
%0 Journal Article
%A Ioana Ghenciu
%T Weak precompactness and property $(V^*)$
 in spaces of compact operators
%J Colloquium Mathematicum
%D 2015
%P 255-269
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/
%R 10.4064/cm138-2-10
%G en
%F 10_4064_cm138_2_10
Ioana Ghenciu. Weak precompactness and property $(V^*)$
 in spaces of compact operators. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 255-269. doi : 10.4064/cm138-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/

Cité par Sources :