Weak precompactness and property $(V^*)$ in spaces of compact operators
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 255-269

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give sufficient conditions for subsets of compact operators to be weakly precompact. Let $L_{w^*}(E^*,F)$ (resp. $K_{w^*}(E^*,F)$) denote the set of all $w^*$-$w$ continuous (resp. $w^*$-$w$ continuous compact) operators from $E^*$ to $F$. We prove that if $H$ is a subset of $K_{w^*}(E^*,F)$ such that $H(x^*)$ is relatively weakly compact for each $x^* \in E^*$ and $H^*(y^*)$ is weakly precompact for each $y^* \in F^*$, then $H$ is weakly precompact. We also prove the following results: If $E$ has property $(wV^*)$ and $F$ has property $(V^*)$, then $K_{w^*}(E^*,F)$ has property $(wV^*)$. Suppose that $L_{w^*}(E^*,F)=K_{w^*}(E^*,F)$. Then $K_{w^*}(E^*,F)$ has property $(V^*)$ if and only if $E$ and $F$ have property $(V^*)$.
DOI : 10.4064/cm138-2-10
Keywords: sufficient conditions subsets compact operators weakly precompact * * resp * * denote set * w continuous resp * w continuous compact operators * prove subset * * * relatively weakly compact each * * * * weakly precompact each * * weakly precompact prove following results has property * has property * * * has property * suppose * * * * * * has property * only have property *

Ioana Ghenciu 1

1 Department of Mathematics University of Wisconsin-River Falls River Falls, WI 54022, U.S.A.
@article{10_4064_cm138_2_10,
     author = {Ioana Ghenciu},
     title = {Weak precompactness and property $(V^*)$
 in spaces of compact operators},
     journal = {Colloquium Mathematicum},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/}
}
TY  - JOUR
AU  - Ioana Ghenciu
TI  - Weak precompactness and property $(V^*)$
 in spaces of compact operators
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 255
EP  - 269
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/
DO  - 10.4064/cm138-2-10
LA  - en
ID  - 10_4064_cm138_2_10
ER  - 
%0 Journal Article
%A Ioana Ghenciu
%T Weak precompactness and property $(V^*)$
 in spaces of compact operators
%J Colloquium Mathematicum
%D 2015
%P 255-269
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-10/
%R 10.4064/cm138-2-10
%G en
%F 10_4064_cm138_2_10
Ioana Ghenciu. Weak precompactness and property $(V^*)$
 in spaces of compact operators. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 255-269. doi: 10.4064/cm138-2-10

Cité par Sources :