Non-nilpotent subgroups of locally graded groups
Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 145-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that a locally graded group with a finite number $m$ of non-(nilpotent of class at most $n$) subgroups is (soluble of class at most $[\log_2n]+m+3$)-by-(finite of order $\leq m!$). We also show that the derived length of a soluble group with a finite number $m$ of non-(nilpotent of class at most $n$) subgroups is at most $[\log_2 n]+m+1$.
DOI : 10.4064/cm138-1-9
Keywords: locally graded group finite number non nilpotent class subgroups soluble class log by finite order leq derived length soluble group finite number non nilpotent class subgroups log

Mohammad Zarrin 1

1 Department of Mathematics University of Kurdistan P.O. Box 416 Sanandaj, Iran
@article{10_4064_cm138_1_9,
     author = {Mohammad Zarrin},
     title = {Non-nilpotent subgroups of locally graded groups},
     journal = {Colloquium Mathematicum},
     pages = {145--148},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2015},
     doi = {10.4064/cm138-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-9/}
}
TY  - JOUR
AU  - Mohammad Zarrin
TI  - Non-nilpotent subgroups of locally graded groups
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 145
EP  - 148
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-9/
DO  - 10.4064/cm138-1-9
LA  - en
ID  - 10_4064_cm138_1_9
ER  - 
%0 Journal Article
%A Mohammad Zarrin
%T Non-nilpotent subgroups of locally graded groups
%J Colloquium Mathematicum
%D 2015
%P 145-148
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-9/
%R 10.4064/cm138-1-9
%G en
%F 10_4064_cm138_1_9
Mohammad Zarrin. Non-nilpotent subgroups of locally graded groups. Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 145-148. doi : 10.4064/cm138-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-9/

Cité par Sources :