$(1,4)$-groups with homocyclic regulator
quotient of exponent $p^3$
Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 131-144
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The class of almost completely decomposable groups with a critical typeset of type $(1,4)$ and a homocyclic regulator quotient of exponent $p^3$ is shown to be of bounded representation type. There are precisely four near-isomorphism classes of indecomposables, all of rank $6$.
Keywords:
class almost completely decomposable groups critical typeset type homocyclic regulator quotient exponent nbsp shown bounded representation type there precisely near isomorphism classes indecomposables rank nbsp
Affiliations des auteurs :
David M. Arnold 1 ; Adolf Mader 2 ; Otto Mutzbauer 3 ; Ebru Solak 4
@article{10_4064_cm138_1_8,
author = {David M. Arnold and Adolf Mader and Otto Mutzbauer and Ebru Solak},
title = {$(1,4)$-groups with homocyclic regulator
quotient of exponent $p^3$},
journal = {Colloquium Mathematicum},
pages = {131--144},
publisher = {mathdoc},
volume = {138},
number = {1},
year = {2015},
doi = {10.4064/cm138-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/}
}
TY - JOUR AU - David M. Arnold AU - Adolf Mader AU - Otto Mutzbauer AU - Ebru Solak TI - $(1,4)$-groups with homocyclic regulator quotient of exponent $p^3$ JO - Colloquium Mathematicum PY - 2015 SP - 131 EP - 144 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/ DO - 10.4064/cm138-1-8 LA - en ID - 10_4064_cm138_1_8 ER -
%0 Journal Article %A David M. Arnold %A Adolf Mader %A Otto Mutzbauer %A Ebru Solak %T $(1,4)$-groups with homocyclic regulator quotient of exponent $p^3$ %J Colloquium Mathematicum %D 2015 %P 131-144 %V 138 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/ %R 10.4064/cm138-1-8 %G en %F 10_4064_cm138_1_8
David M. Arnold; Adolf Mader; Otto Mutzbauer; Ebru Solak. $(1,4)$-groups with homocyclic regulator quotient of exponent $p^3$. Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 131-144. doi: 10.4064/cm138-1-8
Cité par Sources :