$(1,4)$-groups with homocyclic regulator quotient of exponent $p^3$
Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 131-144.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The class of almost completely decomposable groups with a critical typeset of type $(1,4)$ and a homocyclic regulator quotient of exponent $p^3$ is shown to be of bounded representation type. There are precisely four near-isomorphism classes of indecomposables, all of rank $6$.
DOI : 10.4064/cm138-1-8
Keywords: class almost completely decomposable groups critical typeset type homocyclic regulator quotient exponent nbsp shown bounded representation type there precisely near isomorphism classes indecomposables rank nbsp

David M. Arnold 1 ; Adolf Mader 2 ; Otto Mutzbauer 3 ; Ebru Solak 4

1 Department of Mathematics Baylor University Waco, TX 76798-7328, U.S.A.
2 Department of Mathematics University of Hawaii 2565 McCarthy Mall Honolulu, HI 96822, U.S.A.
3 Mathematisches Institut Universität Würzburg Emil-Fischer-Str. 30 97074 Würzburg, Germany
4 Department of Mathematics Middle East Technical University Inönü Bulvarı 06531 Ankara, Turkey
@article{10_4064_cm138_1_8,
     author = {David M. Arnold and Adolf Mader and Otto Mutzbauer and Ebru Solak},
     title = {$(1,4)$-groups with homocyclic regulator
 quotient of exponent $p^3$},
     journal = {Colloquium Mathematicum},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2015},
     doi = {10.4064/cm138-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/}
}
TY  - JOUR
AU  - David M. Arnold
AU  - Adolf Mader
AU  - Otto Mutzbauer
AU  - Ebru Solak
TI  - $(1,4)$-groups with homocyclic regulator
 quotient of exponent $p^3$
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 131
EP  - 144
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/
DO  - 10.4064/cm138-1-8
LA  - en
ID  - 10_4064_cm138_1_8
ER  - 
%0 Journal Article
%A David M. Arnold
%A Adolf Mader
%A Otto Mutzbauer
%A Ebru Solak
%T $(1,4)$-groups with homocyclic regulator
 quotient of exponent $p^3$
%J Colloquium Mathematicum
%D 2015
%P 131-144
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/
%R 10.4064/cm138-1-8
%G en
%F 10_4064_cm138_1_8
David M. Arnold; Adolf Mader; Otto Mutzbauer; Ebru Solak. $(1,4)$-groups with homocyclic regulator
 quotient of exponent $p^3$. Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 131-144. doi : 10.4064/cm138-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-8/

Cité par Sources :