$\alpha $-stable random walk has massive thorns
Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 105-129
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce and study a class of random walks defined on the integer lattice $\mathbb {Z} ^d$—a discrete space and time counterpart of the symmetric $\alpha $-stable process in $\mathbb {R} ^d$. When $0 \alpha 2$ any coordinate axis in $\mathbb {Z} ^d$, $d\geq 3$, is a non-massive set whereas any cone is massive. We provide a necessary and sufficient condition for a thorn to be a massive set.
Keywords:
introduce study class random walks defined integer lattice mathbb discrete space time counterpart symmetric alpha stable process mathbb alpha coordinate axis mathbb geq non massive set whereas cone massive provide necessary sufficient condition thorn massive set
Affiliations des auteurs :
Alexander Bendikov 1 ; Wojciech Cygan 1
@article{10_4064_cm138_1_7,
author = {Alexander Bendikov and Wojciech Cygan},
title = {$\alpha $-stable random walk has massive thorns},
journal = {Colloquium Mathematicum},
pages = {105--129},
publisher = {mathdoc},
volume = {138},
number = {1},
year = {2015},
doi = {10.4064/cm138-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-7/}
}
TY - JOUR AU - Alexander Bendikov AU - Wojciech Cygan TI - $\alpha $-stable random walk has massive thorns JO - Colloquium Mathematicum PY - 2015 SP - 105 EP - 129 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-7/ DO - 10.4064/cm138-1-7 LA - en ID - 10_4064_cm138_1_7 ER -
Alexander Bendikov; Wojciech Cygan. $\alpha $-stable random walk has massive thorns. Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 105-129. doi: 10.4064/cm138-1-7
Cité par Sources :