Spectral synthesis in $L^2(G)$
Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 89-103.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For locally compact, second countable, type I groups $G$, we characterize all closed (two-sided) translation invariant subspaces of $L^2(G)$. We establish a similar result for $K$-biinvariant $L^2$-functions ($K$ a fixed maximal compact subgroup) in the context of semisimple Lie groups.
DOI : 10.4064/cm138-1-6
Keywords: locally compact second countable type groups characterize closed two sided translation invariant subspaces establish similar result k biinvariant functions fixed maximal compact subgroup context semisimple lie groups

Jean Ludwig 1 ; Carine Molitor-Braun 2 ; Sanjoy Pusti 3

1 Université de Lorraine Institut Élie Cartan de Lorraine UMR 7502 F-57045 Metz, France
2 Mathematics Research Unit University of Luxembourg Campus Kirchberg 6, rue Richard Coudenhove-Kalergi L-1359, Luxembourg
3 Mathematics Research Unit University of Luxembourg Campus Kirchberg 6, rue Richard Coudenhove-Kalergi L-1359, Luxembourg and Department of Mathematics and Statistics Indian Institute of Technology Kanpur, India 208016
@article{10_4064_cm138_1_6,
     author = {Jean Ludwig and Carine Molitor-Braun and Sanjoy Pusti},
     title = {Spectral synthesis in $L^2(G)$},
     journal = {Colloquium Mathematicum},
     pages = {89--103},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2015},
     doi = {10.4064/cm138-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-6/}
}
TY  - JOUR
AU  - Jean Ludwig
AU  - Carine Molitor-Braun
AU  - Sanjoy Pusti
TI  - Spectral synthesis in $L^2(G)$
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 89
EP  - 103
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-6/
DO  - 10.4064/cm138-1-6
LA  - en
ID  - 10_4064_cm138_1_6
ER  - 
%0 Journal Article
%A Jean Ludwig
%A Carine Molitor-Braun
%A Sanjoy Pusti
%T Spectral synthesis in $L^2(G)$
%J Colloquium Mathematicum
%D 2015
%P 89-103
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-6/
%R 10.4064/cm138-1-6
%G en
%F 10_4064_cm138_1_6
Jean Ludwig; Carine Molitor-Braun; Sanjoy Pusti. Spectral synthesis in $L^2(G)$. Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 89-103. doi : 10.4064/cm138-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-6/

Cité par Sources :