Spectral synthesis in $L^2(G)$
Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 89-103
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For locally compact, second countable, type I groups $G$, we characterize all closed (two-sided) translation invariant subspaces of $L^2(G)$. We establish a similar result for $K$-biinvariant $L^2$-functions ($K$ a fixed maximal compact subgroup) in the context of semisimple Lie groups.
Keywords:
locally compact second countable type groups characterize closed two sided translation invariant subspaces establish similar result k biinvariant functions fixed maximal compact subgroup context semisimple lie groups
Affiliations des auteurs :
Jean Ludwig 1 ; Carine Molitor-Braun 2 ; Sanjoy Pusti 3
@article{10_4064_cm138_1_6,
author = {Jean Ludwig and Carine Molitor-Braun and Sanjoy Pusti},
title = {Spectral synthesis in $L^2(G)$},
journal = {Colloquium Mathematicum},
pages = {89--103},
publisher = {mathdoc},
volume = {138},
number = {1},
year = {2015},
doi = {10.4064/cm138-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-6/}
}
TY - JOUR AU - Jean Ludwig AU - Carine Molitor-Braun AU - Sanjoy Pusti TI - Spectral synthesis in $L^2(G)$ JO - Colloquium Mathematicum PY - 2015 SP - 89 EP - 103 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm138-1-6/ DO - 10.4064/cm138-1-6 LA - en ID - 10_4064_cm138_1_6 ER -
Jean Ludwig; Carine Molitor-Braun; Sanjoy Pusti. Spectral synthesis in $L^2(G)$. Colloquium Mathematicum, Tome 138 (2015) no. 1, pp. 89-103. doi: 10.4064/cm138-1-6
Cité par Sources :