Upper bounds for the cohomological dimensions of finitely generated modules over a commutative Noetherian ring
Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 263-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a commutative Noetherian ring, $I$ a proper ideal of $R$, and $M$ be a finitely generated $R$-module. We provide bounds for the cohomological dimension of the $R$-module $M$ with respect to the ideal $I$ in several cases.
Keywords:
commutative noetherian ring proper ideal finitely generated r module provide bounds cohomological dimension r module respect ideal several cases
Affiliations des auteurs :
Ghader Ghasemi 1 ; Kamal Bahmanpour 2 ; Jafar A'zami 1
@article{10_4064_cm137_2_10,
author = {Ghader Ghasemi and Kamal Bahmanpour and Jafar A'zami},
title = {Upper bounds for the cohomological dimensions of finitely generated modules over a commutative {Noetherian} ring},
journal = {Colloquium Mathematicum},
pages = {263--270},
publisher = {mathdoc},
volume = {137},
number = {2},
year = {2014},
doi = {10.4064/cm137-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-10/}
}
TY - JOUR AU - Ghader Ghasemi AU - Kamal Bahmanpour AU - Jafar A'zami TI - Upper bounds for the cohomological dimensions of finitely generated modules over a commutative Noetherian ring JO - Colloquium Mathematicum PY - 2014 SP - 263 EP - 270 VL - 137 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-10/ DO - 10.4064/cm137-2-10 LA - en ID - 10_4064_cm137_2_10 ER -
%0 Journal Article %A Ghader Ghasemi %A Kamal Bahmanpour %A Jafar A'zami %T Upper bounds for the cohomological dimensions of finitely generated modules over a commutative Noetherian ring %J Colloquium Mathematicum %D 2014 %P 263-270 %V 137 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-10/ %R 10.4064/cm137-2-10 %G en %F 10_4064_cm137_2_10
Ghader Ghasemi; Kamal Bahmanpour; Jafar A'zami. Upper bounds for the cohomological dimensions of finitely generated modules over a commutative Noetherian ring. Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 263-270. doi: 10.4064/cm137-2-10
Cité par Sources :