Linear extensions of orders invariant under abelian group actions
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 117-125.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be an abelian group acting on a set $X$, and suppose that no element of $G$ has any finite orbit of size greater than one. We show that every partial order on $X$ invariant under $G$ extends to a linear order on $X$ also invariant under $G$. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set $X$, there is a linear preorder $\le $ on the powerset $\mathcal PX$ invariant under $G$ and such that if $A$ is a proper subset of $B$, then $A B$ (i.e., $A\le B$ but not $B\le A$).
DOI : 10.4064/cm137-1-8
Keywords: abelian group acting set suppose element has finite orbit size greater every partial order invariant under extends linear order invariant under discuss extensions linear preorders orbit condition met abelian group acting set there linear preorder powerset mathcal invariant under proper subset

Alexander R. Pruss 1

1 Department of Philosophy Baylor University One Bear Place #97273 Waco, TX 76798-7273, U.S.A.
@article{10_4064_cm137_1_8,
     author = {Alexander R. Pruss},
     title = {Linear extensions of orders invariant under abelian group actions},
     journal = {Colloquium Mathematicum},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2014},
     doi = {10.4064/cm137-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-8/}
}
TY  - JOUR
AU  - Alexander R. Pruss
TI  - Linear extensions of orders invariant under abelian group actions
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 117
EP  - 125
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-8/
DO  - 10.4064/cm137-1-8
LA  - en
ID  - 10_4064_cm137_1_8
ER  - 
%0 Journal Article
%A Alexander R. Pruss
%T Linear extensions of orders invariant under abelian group actions
%J Colloquium Mathematicum
%D 2014
%P 117-125
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-8/
%R 10.4064/cm137-1-8
%G en
%F 10_4064_cm137_1_8
Alexander R. Pruss. Linear extensions of orders invariant under abelian group actions. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 117-125. doi : 10.4064/cm137-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-8/

Cité par Sources :