Wiener's inversion theorem for a certain class of $^{*}$-algebras
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 103-116.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We generalize Wiener's inversion theorem for Fourier transforms on closed subsets of the dual group of a locally compact abelian group to cosets of ideals in a class of non-commutative $^*$-algebras having specified properties, which are all fulfilled in the case of the group algebra of any locally compact abelian group.
DOI : 10.4064/cm137-1-7
Keywords: generalize wieners inversion theorem fourier transforms closed subsets dual group locally compact abelian group cosets ideals class non commutative * algebras having specified properties which fulfilled the group algebra locally compact abelian group

Tobias Blendek 1

1 Department of Mathematics and Statistics Helmut Schmidt University Hamburg Holstenhofweg 85 22043 Hamburg, Germany
@article{10_4064_cm137_1_7,
     author = {Tobias Blendek},
     title = {Wiener's inversion theorem for a certain
 class of $^{*}$-algebras},
     journal = {Colloquium Mathematicum},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2014},
     doi = {10.4064/cm137-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-7/}
}
TY  - JOUR
AU  - Tobias Blendek
TI  - Wiener's inversion theorem for a certain
 class of $^{*}$-algebras
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 103
EP  - 116
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-7/
DO  - 10.4064/cm137-1-7
LA  - en
ID  - 10_4064_cm137_1_7
ER  - 
%0 Journal Article
%A Tobias Blendek
%T Wiener's inversion theorem for a certain
 class of $^{*}$-algebras
%J Colloquium Mathematicum
%D 2014
%P 103-116
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-7/
%R 10.4064/cm137-1-7
%G en
%F 10_4064_cm137_1_7
Tobias Blendek. Wiener's inversion theorem for a certain
 class of $^{*}$-algebras. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 103-116. doi : 10.4064/cm137-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-7/

Cité par Sources :