A construction of the Hom-Yetter–Drinfeld category
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 43-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In continuation of our recent work about smash product Hom-Hopf algebras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter–Drinfeld category $_H^H{\mathbb {YD}}$ via the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter–Drinfeld modules can provide solutions of the Hom-Yang–Baxter equation and $_H^H{\mathbb {YD}}$ is a pre-braided tensor category, where $(H, \beta , S)$ is a Hom-Hopf algebra. Furthermore, we show that $(A^{\natural }_{\diamond } H,\alpha \otimes \beta )$ is a Radford biproduct Hom-Hopf algebra if and only if $(A,\alpha )$ is a Hom-Hopf algebra in the category $_H^H{\mathbb {YD}}$. Finally, some examples and applications are given.
DOI : 10.4064/cm137-1-4
Keywords: continuation recent work about smash product hom hopf algebras colloq math introduce hom yetter drinfeld category mathbb via radford biproduct hom hopf algebra prove hom yetter drinfeld modules provide solutions hom yang baxter equation mathbb pre braided tensor category where beta hom hopf algebra furthermore natural diamond alpha otimes beta radford biproduct hom hopf algebra only alpha hom hopf algebra category mathbb finally examples applications given

Haiying Li 1 ; Tianshui Ma 1

1 College of Mathematics and Information Science Henan Normal University 453007 Xinxiang, China
@article{10_4064_cm137_1_4,
     author = {Haiying Li and Tianshui Ma},
     title = {A construction of the {Hom-Yetter{\textendash}Drinfeld} category},
     journal = {Colloquium Mathematicum},
     pages = {43--65},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2014},
     doi = {10.4064/cm137-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-4/}
}
TY  - JOUR
AU  - Haiying Li
AU  - Tianshui Ma
TI  - A construction of the Hom-Yetter–Drinfeld category
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 43
EP  - 65
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-4/
DO  - 10.4064/cm137-1-4
LA  - en
ID  - 10_4064_cm137_1_4
ER  - 
%0 Journal Article
%A Haiying Li
%A Tianshui Ma
%T A construction of the Hom-Yetter–Drinfeld category
%J Colloquium Mathematicum
%D 2014
%P 43-65
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-4/
%R 10.4064/cm137-1-4
%G en
%F 10_4064_cm137_1_4
Haiying Li; Tianshui Ma. A construction of the Hom-Yetter–Drinfeld category. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 43-65. doi : 10.4064/cm137-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-4/

Cité par Sources :