Rarefaction waves in nonlocal convection-diffusion equations
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 27-42.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a nonlocal convection-diffusion equation $u_t=J*u-u-uu_x,$ where $J$ is a probability density. We supplement this equation with step-like initial conditions and prove the convergence of the corresponding solutions towards a rarefaction wave, i.e. a unique entropy solution of the Riemann problem for the inviscid Burgers equation.
DOI : 10.4064/cm137-1-3
Mots-clés : consider nonlocal convection diffusion equation j*u u uu where probability density supplement equation step like initial conditions prove convergence corresponding solutions towards rarefaction wave unique entropy solution riemann problem inviscid burgers equation

Anna Pudełko 1

1 AGH University of Science and Technology Al. Mickiewicza 30 30-059 Kraków, Poland
@article{10_4064_cm137_1_3,
     author = {Anna Pude{\l}ko},
     title = {Rarefaction waves in nonlocal
 convection-diffusion equations},
     journal = {Colloquium Mathematicum},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2014},
     doi = {10.4064/cm137-1-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-3/}
}
TY  - JOUR
AU  - Anna Pudełko
TI  - Rarefaction waves in nonlocal
 convection-diffusion equations
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 27
EP  - 42
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-3/
DO  - 10.4064/cm137-1-3
LA  - fr
ID  - 10_4064_cm137_1_3
ER  - 
%0 Journal Article
%A Anna Pudełko
%T Rarefaction waves in nonlocal
 convection-diffusion equations
%J Colloquium Mathematicum
%D 2014
%P 27-42
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-3/
%R 10.4064/cm137-1-3
%G fr
%F 10_4064_cm137_1_3
Anna Pudełko. Rarefaction waves in nonlocal
 convection-diffusion equations. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 27-42. doi : 10.4064/cm137-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-3/

Cité par Sources :