Rarefaction waves in nonlocal
convection-diffusion equations
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 27-42
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a nonlocal convection-diffusion equation $u_t=J*u-u-uu_x,$ where $J$ is a probability density. We supplement this equation with step-like initial conditions and prove the convergence of the corresponding solutions towards a rarefaction wave, i.e. a unique entropy solution of the Riemann problem for the inviscid Burgers equation.
Mots-clés :
consider nonlocal convection diffusion equation j*u u uu where probability density supplement equation step like initial conditions prove convergence corresponding solutions towards rarefaction wave unique entropy solution riemann problem inviscid burgers equation
Affiliations des auteurs :
Anna Pudełko 1
@article{10_4064_cm137_1_3,
author = {Anna Pude{\l}ko},
title = {Rarefaction waves in nonlocal
convection-diffusion equations},
journal = {Colloquium Mathematicum},
pages = {27--42},
publisher = {mathdoc},
volume = {137},
number = {1},
year = {2014},
doi = {10.4064/cm137-1-3},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-3/}
}
Anna Pudełko. Rarefaction waves in nonlocal convection-diffusion equations. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 27-42. doi: 10.4064/cm137-1-3
Cité par Sources :