On stable equivalences of module subcategories over a semiperfect noetherian ring
Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 7-26.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a semiperfect two-sided noetherian ring $\varLambda $, we study two subcategories $\mathcal {A}_k(\varLambda )=\{M\in \mathrm {mod}\ \varLambda \mid \mathrm {Ext}_\varLambda ^j(\mathop {{\rm Tr}}M,\varLambda )=0\ (1\leq j\leq k)\}$ and $\mathcal {B}_k(\varLambda )=\{N\in \mathrm {mod}\ \varLambda \mid \mathrm {Ext}_\varLambda ^j(N,\varLambda )=0\ (1\leq j\leq k)\}$ of the category $\mathop {\rm mod} \varLambda $ of finitely generated right $\varLambda $-modules, where $\mathop {\rm Tr}M$ is Auslander's transpose of $M$. In particular, we give another convenient description of the categories $\mathcal {A}_{k}(\varLambda )$ and $\mathcal {B}_{k}(\varLambda )$, and we study category equivalences and stable equivalences between them. Several results proved in [J. Algebra 301 (2006), 748–780] are extended to the case when $\varLambda $ is a two-sided noetherian semiperfect ring.
DOI : 10.4064/cm137-1-2
Keywords: given semiperfect two sided noetherian ring varlambda study subcategories mathcal varlambda mathrm mod varlambda mid mathrm ext varlambda mathop varlambda leq leq mathcal varlambda mathrm mod varlambda mid mathrm ext varlambda varlambda leq leq category mathop mod varlambda finitely generated right varlambda modules where mathop auslanders transpose particular another convenient description categories mathcal varlambda mathcal varlambda study category equivalences stable equivalences between several results proved algebra extended varlambda two sided noetherian semiperfect ring

Noritsugu Kameyama 1 ; Yuko Kimura 1 ; Kenji Nishida 2

1 Interdisciplinary Graduate School of Science and Technology Shinshu University 3-1-1 Asahi, Matsumoto Nagano, 390-8621, Japan
2 Department of Mathematical Sciences Shinshu University 3-1-1 Asahi, Matsumoto Nagano, 390-8621, Japan
@article{10_4064_cm137_1_2,
     author = {Noritsugu Kameyama and Yuko Kimura and Kenji Nishida},
     title = {On stable equivalences of module subcategories
 over a semiperfect noetherian ring},
     journal = {Colloquium Mathematicum},
     pages = {7--26},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2014},
     doi = {10.4064/cm137-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-2/}
}
TY  - JOUR
AU  - Noritsugu Kameyama
AU  - Yuko Kimura
AU  - Kenji Nishida
TI  - On stable equivalences of module subcategories
 over a semiperfect noetherian ring
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 7
EP  - 26
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-2/
DO  - 10.4064/cm137-1-2
LA  - en
ID  - 10_4064_cm137_1_2
ER  - 
%0 Journal Article
%A Noritsugu Kameyama
%A Yuko Kimura
%A Kenji Nishida
%T On stable equivalences of module subcategories
 over a semiperfect noetherian ring
%J Colloquium Mathematicum
%D 2014
%P 7-26
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-2/
%R 10.4064/cm137-1-2
%G en
%F 10_4064_cm137_1_2
Noritsugu Kameyama; Yuko Kimura; Kenji Nishida. On stable equivalences of module subcategories
 over a semiperfect noetherian ring. Colloquium Mathematicum, Tome 137 (2014) no. 1, pp. 7-26. doi : 10.4064/cm137-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm137-1-2/

Cité par Sources :